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1. Certain solar power plant has three operating modes: low intensity, medium intensity and
high intensity. The transitions from one operating mode to another form a continuous time

Markov chain on the states {L,M,H} with generator Q =


L M H

L −3 3 0
M 3 −4 1
H 0 2 −2

. Denote

this Markov chain by (Xt)t≥0

(a) Draw the diagram for the jump chain of (Xt)t≥0 0 and explain why (Xt)t≥0 is irreducible.

(b) Compute the stationary distribution for (Xt)t≥0.

(c) What is the expected average fraction of time that the plant spends in the low intensity
mode in the long run?

Solution.

(a) The parameters of the jump-and-hold diagram can be read off from the generator matrix
Q

1

Exp(3)

2

Exp(4)

3

Exp(2)1

3
4

1
4

1

(b) The stationary distribution π = (πL, πM , πH) is determined from the equations πQ = 0
and πL + πM + πH = 1.

−3πL + 3πM = 0, (1)

3πL − 4πM + 2πH = 0, (2)

πM − 2πH = 0, (3)

πL + πM + πH = 1. (4)

The first and third equations give πL = πM and πM = 2πH . Plugging this into the last
equation gives

πH = 0.2, πM = 0.4, πL = 0.4. (5)

(c) The average fraction of time spent in the low intensity state in the long run is given by
(see lecture 10, page 11) πL = 0.4.
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2. Let (Xt)t≥0 be a continuous-time Markov chain on the state space {0, 1, 2} with transition
probability functions

P (t) =

0 1 2

0 1
3 + e−4t − 1

3e
−3t 1

6 −
1
2e
−4t + 1

3e
−3t 1

2 −
1
2e
−4t

1 1
3 + e−4t − 4

3e
−3t 1

6 −
1
2e
−4t + 4

3e
−3t 1

2 −
1
2e
−4t

2 1
3 − e

−4t + 2
3e
−3t 1

6 + 1
2e
−4t − 2

3e
−3t 1

2 + 1
2e
−4t

.

(a) Determine the distribution of the sojourn times of the process at states 0, 1 and 2.

(b) In the long run, what fraction of time will the process (Xt)t≥0 spend in state 0? [Hint.
You can answer this question without solving any equations, and if you do so you should
clearly state which results you use.]

(c) Let Q = (qij)
2
i,j=0 be the generator matrix of (Xt)t≥0. Compute q10. Suppose you observe

the process jumping from state 2 to state 0. What is the average time that you have to
wait until the next time you observe the jump from state 2 to state 0?

Solution.

(a) The distribution of the sojourn times can be read off from the infinitesimal generator Q,
and from the relation between the Markov semigroup P (t) and Q we have that Q = P ′(0).
Therefore, to determine the distribution of the sojourn times it is enough to compute the
derivatives of the diagonal entries of P (t) at t = 0

P ′00(0) = −3, P ′11(0) = −2, P ′22(0) = −2.

Thus, the sojourn times at states 0, 1 and 2 have exponential distributions with rates
q0 = 3, q1 = 2, q2 = 2 correspondingly.

(b) Let π = (π0, π1, π2) be the stationary distribution for the Markov chain (Xt)t≥0. Then πi,
i ∈ {0, 1, 2}, gives the average long run fraction of time spent by the process in state i.

In order to compute π0, note that from the theorem about the long run behavior of
continuous time Markov chains, Pi0 → π0 as t → ∞. If we take the limit in the above
explicit formula for P (t) we get

lim
t→∞

P (t) =

 1
3

1
6

1
2

1
3

1
6

1
2

1
3

1
6

1
2

 , (6)

and thus on average in the long run the process spends 1/3 of the time in state 0.

(c) If Q is the infinitesimal generator of (Xt)t≥0, then

q10 = P ′10(0) = 0.

In particular this means that the process cannot jump directly from state 1 to state 0; the
process can jump to state 0 only from state 2.

In order to compute the average time required to observe the transition from 2 to 0
happening again, we can either apply the first step analysis, or use the theorem about
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the long run behavior of the continuous time Markov chains. I present below the second
solution.

From the theorem about the long run behavior of the continuous time Markov chains,

πi =
1

qimi
,

where mi is the average return time to state i. From this we have that the average return
time to 0 is given by

m0 =
1

q0π0
=

1
1
33

= 1.

If you observe the transition from state 2 to state 0, then the return of the process to state
0 can only occur through a transition from 2 to 0 (q10 = 0, so the jumps from 1 to 0 are
not allowed). Therefore, the average time to see again the transition from 2 to 0 is equal
to m0 = 1.
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3. Let X and Y be two random variables. Suppose that Y has exponential distribution with rate
λ > 0, and suppose that given Y = y, y > 0, the random variable X has normal distribution
with mean y and variance 1.

(a) Compute E(X).

(b) Compute P (X > Y ).

Solution.

(a) Compute E(X) by conditioning on the value of Y :

E(X) =

∫ ∞
0

E(X |Y = y)λe−λydy =

∫ ∞
0

yλe−λydy =
1

λ
. (7)

(b) Compute P (X > Y ) by conditioning on the value of Y :

P (X > Y ) =

∫ ∞
0

P (X > Y |Y = y)λe−λydy =

∫ ∞
0

1

2
λe−λydy =

1

2
. (8)
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4. The time intervals between two consecutive rainstorms in San Diego are independent identically
distributed random variables with density (in years)

f(x) =

{
2x, x ∈ (0, 1)
0, otherwise.

(9)

(a) Compute the long run expected time between the last rainstorm and the next rainstorm.

(b) What is the long run probability that it has been at most 6 months since the last rainstorm?

Solution.

(a) If δ(t) is the current life (age) of the renewal process at time t (time from the last rainstorm
to time t), and γ(t) is the residual life of the renewal process at time t (time until the next
rainstorm after time t), then we have to compute

lim
t→∞

E(δ(t) + γ(t)) = lim
t→∞

E(β(t)). (10)

Lecture 19, page 3:

lim
t→∞

E(β(t)) =
σ2 + µ2

µ
, (11)

where µ and σ2 are the mean and variance of the interrenewal times.

µ =

∫ 1

0
2x2dx =

2x3

3

∣∣∣1
0

=
2

3
, (12)

µ2 + σ2 =

∫ 1

0
2x3dx =

x4

2

∣∣∣1
0

=
1

2
, (13)

therefore

lim
t→∞

E(β(t)) =
3

4
. (14)

(b) In terms of the renewal process, the long run probability that it has been at most 6 months
since the last rainstorm is given by

lim
t→∞

P (δ(t) < 1/2). (15)

Lecture 17, page 4:

lim
t→∞

P (δ(t) < 1/2) =

∫ 1/2

0

1

µ
(1− F (x))dx, (16)

where F (x) is the interrenewal distribution. Note, that F (x) = 1 for x ≥ 1. For x ∈ (0, 1)

F (x) =

∫ x

0
2sds = x2. (17)

Therefore,

lim
t→∞

P (δ(t) < 1/2) =

∫ 1/2

0

3

2
(1− x2)dx =

3

2

(
x− x3

3

)∣∣∣∣1/2
0

=
11

16
. (18)



MATH 180C FINAL, Page 11 of 21, 6/8/22, 3-5:59 PM, WLH 2205

(ADDITIONAL SPACE FOR WORK, clearly INDICATE the problem you are working on)



MATH 180C FINAL, Page 12 of 21, 6/8/22, 3-5:59 PM, WLH 2205

5. Let ξi be independent indentically distributed random variables having normal distribution
N(0, 4) with mean zero and variance 4.

(a) Show that the random variable (Xn)n≥0, given by

X0 = 1, Xn =
1

4n
ξ21 · · · ξ2n,

defines a nonnegative martingale.

(b) Estimate the probability that (Xn)n≥0 ever exceeds 100.

Solution.

(a) Check the definition of a martingale:

E(|Xn|) =
1

4n
E(ξ21 · · · ξ2n) =

1

4n
(E(ξ2))n = 1 <∞, (19)

E(Xn+1|X0, . . . , Xn) = E
(ξ2n+1

4
Xn|X0, . . . , Xn

)
= E

(ξ2n+1

4

)
Xn = Xn. (20)

Since Xn ≥ 0, (Xn)n≥0 is a nonnegative martingale.

(b) Using the maximal inequality for nonnegative martingales (Lecture 22, page 2)

P (max
n≥0

Xn ≥ 100) ≤ E(X0)

100
=

1

100
. (21)
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6. Let (Xt)t≥0 be a Brownian motion with drift µ and variance parameter σ2. It is given that
X0 = 0, E(X1) = 1

2 and Var(X1) = 1.

(a) Determine µ and σ2.

(b) Suppose that the price fluctuations of a share are modeled by the process (Zt)t≥0 given by

Zt = eXt . (22)

Determine the probability that the price of the share triples before it drops by two thirds
(i.e., probability that the price increases from 1 to 3 before in drops from 1 to 1/3).

Solution.

(a) If (Xt)t≥0 is a Brownian motion with drift µ and variance σ2, then E(Xt) = µt and
Var(Xt) = σ2, therefore we conclude that µ = 1/2 and σ2 = 1.

(b) If (Xt)t≥0 is a Brownian motion with drift µ and variance σ2, then the process (Zt)t≥0
given by Zt = eXt is a geometric Brownian motion with drift α, where

α = µ+ σ2/2 = 1. (23)

Denote T := min{t : Zt = 3 or Zt = 1/3}. Compute

1− 2α

σ2
= 1− 2

1
= −1. (24)

Using the “gambler’s ruin” theorem for geometric Brownian motion (Lecture 27, page 13)

P (ZT = 3) =
1− (1/3)−1

3−1 − (1/3)−1
=

1− 3

1/3− 3
=

3

4
. (25)
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7. Let τ1 be the smallest zero of a standard Brownian motion that exceeds b > 0. Compute
P (τ1 < t) for t > b.

Solution. Let (Bt)t≥0 be a standard Brownian motion and let t > b. The event {τ1 < t}
means that B has a zero on the interval (b, t). Using the theorem about the distribution of
zeros of Brownian motion (lecture 26, page 4) we get that

P (τ1 < t) = P (B has zero on (b, t)) =
2

π
arccos

√
b/t. (26)
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