MATH180C: Introduction to Stochastic Processes II

Lecture Aoo: math-old.ucsd.edu/~ynemish/teaching/180cA Lecture B00: math-old.ucsd edu/~ynemish/teaching/180c-

Today: Birth and death processes. Strong Markov property. Hitting probabilities

Next: PK 6.5, 6.6, Durrett 4.1
Week 2:

- homework 1 (due Friday April 8)

MATH180C: Introduction to Stochastic Processes II

Lecture Aoo: math-old.ucsd.edu/~ynemish/teaching/180cA Lecture B00: math-old.ucsd edu/~ynemish/teaching/180c-

Today: Birth and death processes. Strong Markov property. Hitting probabilities

Next: PK 6.5, 6.6, Durrett 4.1
Week 2:

- homework 1 (due Friday April 8)

Birth and death processes

\uparrow death rate
Combine both

Birth and death processes

Infinitesimal definition
Def. Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous time $M C, X_{t} \in\{0,1,2, \ldots\}$ with stationary transition probabilities. Then $\left(X_{t}\right)_{t \geq 0}$ is called a birth and death process with birth rates $\left(\lambda_{k}\right)$ and death rates $\left(\mu_{k}\right)$ if

1. $P_{i, i+1}(h)=$
2. $P_{i, i-1}(h)=$
3. $P_{i, i}(h)=$
4. $P_{i j}(0)=\quad\left(P\left(X_{0}=j \mid X_{0}=i\right)=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right)\right.$
5. $\mu_{0}=0, \lambda_{0}>0, \lambda_{i}, \mu_{i}>0$

Example: Linear growth with immigration
Dynamics of a certain population is described by the following principles:
during any small period of time of length h

- each individual gives birth to one new member with probability independently of other members;
- each individual dies with probability independently of other members;
- one external member joins the population with probability
Can be modeled as a Markov process

Example: Linear growth with immigration
Let $\left(X_{t}\right)_{t \geq 0}$ denote the size of the population.
Using a similar argument as for the Yule/pure death models:

- $P_{n, n+1}(h)=$
- $P_{n, n-1}(h)=$
- $P_{n, n}(h)=$
\rightarrow birth and death process with

$$
\begin{aligned}
& \lambda_{n}= \\
& \mu_{n}=
\end{aligned}
$$

Alternative (jump and hold) characterization

Sojourn times S_{k} are independent,
Each transition has two parts

- wait in state i for time ~
- then choose where to go:
go $\sim \rightarrow$ with probability +
go (i-1 with pobability_+

Stopping times
Def (Informal). Let $\left(X_{t}\right)_{t \geqslant 0}$ be a stochastic process and let $T \geq 0$ be a random variable. We call T a stopping time if the event

$$
\{T \leq t\}
$$

can be determined from the knowledge of the process up to time t (i.e., from $\left\{X_{s}: 0 \leq s \leq t\right\}$)
Examples: Let $\left(X_{t}\right)_{t \geq 0}$ be right-continuous

1. $\min \left\{t \geq 0: X_{t}=i\right\}$ is a stopping time
2. W_{k} is a stopping time
3. $\sup \left\{t \geq 0: X_{t}=i\right\}$ is not a stopping time

Stopping times

$$
\{T \leq t\}
$$

Strong Markov property
Theorem (no proof)
Let $\left(X_{t}\right)_{t \geq 0}$ be a $M C$, let T be a stopping time of $\left(X_{t}\right)_{t \geq 0}$. Then, conditional on $T<\infty$ and $X_{T}=i$,

$$
\left(X_{T+t}\right)_{t \geq 0}
$$

(i) is independent of $\quad\left\{X_{s}, 0 \leq s \leq T\right\}$
(ii) has the same distribution as $\left(X_{t}\right)_{t \geq 0}$ starting from.

Example
$\left(X_{w_{1}+t}\right)_{t \geq 0}$ has the same distribution as $\left(X_{t}\right)_{t \geq 0}$ conditioned on $X_{0}=i$ and is indep. of what happened before

Alternative (jump and hold) characterization
"Proof"
Denote $G_{i}(t):=P\left(S_{k}>t \mid X_{w_{k}}=i\right)$

$$
G_{i}(t+h)=P\left(S_{k}>t+h \mid X_{w_{k}}=i\right)
$$

SMarkov $=P\left(\right.$ no jumps on $\left.[0, t+h] \mid X_{0}=i\right)$

$$
\begin{aligned}
& \text { Markov }=P\left(\text { no jumps on }[0, t] \mid X_{0}=i\right) P\left(n 0 \text { jumps on }[0, h] \mid X_{0}=i\right) \\
&=P\left(S_{0}>t \mid X_{0}=i\right) P\left(S_{0}>h \mid X_{0}=i\right)=G_{i}(t)\left(1-\left(\lambda_{i}+\mu_{i}\right) h+0(h)\right) \\
&=G_{i}(t)-\left(\lambda_{i}+\mu_{i}\right) G_{i}(t) h+G_{i}(t) 0(h) \\
& G G_{i}^{\prime}(t)=-\left(\lambda_{i}+\mu_{i}\right) G_{i}(t), G_{i}(0)=1
\end{aligned}
$$

Alternative (jump and hold) characterization
"Proof" cont.

$$
\begin{aligned}
& G_{i}^{\prime}(t)=-\left(\lambda_{i}+\mu_{i}\right) G_{i}(t), G_{i}(0)=1 \\
& G G_{i}(t)=e^{-\left(\lambda_{i}+\mu_{i}\right) t}=P\left(S_{k}>t \mid X_{w_{i}}=i\right)
\end{aligned}
$$

$\vee L, S_{k} \sim E_{x p}\left(\lambda_{i}+\mu_{i}\right)$ (given that the process sojourns in i)
Suppose the process waits Exp $\left(\lambda_{i}+\mu_{i}\right)$, then
jumps to $i+1$ with probability $\lambda i /\left(\lambda_{i}+\mu_{i}\right)$
to $i-1$ with probability $\mu i /(\lambda i+\mu i)$

$$
\begin{aligned}
P_{i, i+1}(h)^{\prime \prime} & =P P\left(S_{k} \leq h \mid X_{w_{k}}=i\right) P(j u m p \text { to } i+1) \\
& =\left(1-e^{-\left(\lambda i+\mu_{i}\right)}\right)^{\frac{\lambda i}{}} \frac{\lambda_{i}+\mu_{i}}{}=\left(\left(\lambda_{i}+\mu_{i}\right) h+0(h)\right) \frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}=\lambda_{i} h+o(h) \\
P_{i, i-1}(h)^{\prime} & =P\left(S_{k} \leq h \mid X_{w_{k}}{ }^{i}\right) P(j u m p \text { to } i-1)=\left(\left(\lambda_{i}+\mu_{i}\right) h+0(h)\right) \frac{\mu_{i}}{\lambda_{i}+\mu_{i}}=\mu_{i} h+0(h)
\end{aligned}
$$

Def. Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous time $M C$, let $W_{n}, n \geq 0$, be the corresponding waiting (arrival, jump) times. Then we call $\left(Y_{n}\right)_{n \geq 0}$ defined by the jump chain of $\left(X_{t}\right)+2$.

« random walk

Absorption probabilities for B\&D processes
Let $\left(X_{t}\right)_{t \geq 0}$ be a birth and death process, and assume that the state 0 is absorbing, $\lambda_{0}=0$. Then $P\left(\left(X_{t}\right)_{t 20}\right.$ gets absorbed in $\left.0 \mid X_{0}=i\right)$
\rightarrow use the first step analysis to compute the absorption probabilities for $\left(y_{n}\right)_{n \geq 0}$ (and for $\left(X_{t}\right)_{t 20}$)
Denote $u_{i}=P\left(Y_{n}\right.$ is absorded in $\left.0 \mid Y_{0}=i\right)$
Then

Absorption probabilities for $B \& D$ processes

$$
u_{0}=1, \quad u_{n}=\frac{\mu_{n}}{\lambda_{n}+\mu_{n}} u_{n-1}+\frac{\lambda_{n}}{\lambda_{n}+\mu_{n}} u_{n+1}
$$

Rewrite $\quad\left(\lambda_{n}+\mu_{n}\right) u_{n}=\mu_{n} u_{n-1}+\lambda_{n} u_{n+1}$

$$
\begin{aligned}
& \lambda_{n}\left(u_{n+1}-u_{n}\right)=\mu_{n}\left(u_{n}-u_{n-1}\right) \\
& u_{n+1}-u_{n}=\frac{\mu_{n}}{\lambda_{n}}\left(u_{n}-u_{n-1}\right) \\
&=\underbrace{\mu_{n}}_{\rho_{n}} \cdot \frac{\mu_{n-1}}{\lambda_{n-1}} \cdots \cdot \frac{\mu_{1}}{\lambda_{1}}
\end{aligned}\left(u_{1}-u_{0}^{\prime}\right) .
$$

(*) $u_{n+1}-u_{n}=\rho_{n}\left(u_{1}-1\right)$
Note that $\sum_{k=1}^{n-1}\left(u_{k+1}-u_{k}\right)=u_{n}-u_{1}=\left(u_{1}-1\right) \sum_{n=1}^{n-1} \rho_{n}$
If $\sum_{n=1}^{\infty} \rho_{n}=\infty$, then $u_{1}=1$ and from (*) $u_{n}=1 \quad \forall n \geq 0$.

Absorption probabilities for $B \& D$ processes
Let $\sum_{k=1}^{\infty} \rho_{k}<\infty$. If we assume that $u_{n} \rightarrow 0, n \rightarrow \infty$, then by taking $n \rightarrow \infty$

$$
\begin{aligned}
& u^{u_{n}}-u_{1}=\left(u_{1}-1\right) \sum_{k=1}^{n-1} \rho_{k} \\
& u_{1}=\frac{\sum_{k=1}^{\infty} \rho_{k}}{1+\sum_{k=1}^{\infty} \rho_{k}} \\
& \text { and } \quad u_{n}=u_{1}+\left(u_{1}-1\right) \sum_{k=1}^{n-1} p_{k}=\frac{\sum_{k=1}^{\infty} \rho_{k}+\left(\sum_{k=1}^{\infty} p_{k}+1-\sum_{k=1}^{\infty} p_{k}\right) \sum_{k=1}^{n-1} p_{k}}{1+\sum_{k=1}^{\infty} p_{k}} \\
&=\frac{\sum_{k=1}^{\infty} p_{k}-\sum_{k=1}^{n-1} p_{k}}{1+\sum_{k=1}^{\infty} p_{k}}=\frac{\sum_{k=n}^{\infty} \rho_{k}}{1+\sum_{k=1}^{\infty} p_{k}}
\end{aligned}
$$

