MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
Lecture B00: math.ucsd edu/~ynemish/teaching/180ch

Today: Brownian motion

Next: PK 8.1-8.2

Week 10:

- homework 8 (due Friday, June 3)
- HW7 regrades are active on Gradescope until June 4, 11 PM
- homework 9 and solutions are available on the course website

Reflection principle
Thy . Let $\left(B_{t}\right)_{t 20}$ be a standard BM. Then for any $t \geq 0$ and $x>0$

$$
P\left(\max _{0 \leq u \leqslant t} B_{u}>x\right)=P\left(\left|S_{t}\right|>x\right)
$$

Proof. Let $\tau_{x}=\min \left\{t: B_{t}=x\right\}$. Note that τ_{x} is a stopping time and is uniquely determined by $\left\{B_{u}, 0 \leq u \leq \tau_{x}\right\}$ From the definition of $\tau_{x}, \max _{0 \in u \leq t} B_{u} \geqslant x \Leftrightarrow \tau_{x} \leq t$. Then

$$
\begin{aligned}
& P\left(\max _{0 \leq u \leq t} B_{u} \geq x, B_{t}<x\right)=P\left(\tau_{x} \leq t, B_{\left.\left(t-\tau_{x}\right)+\tau_{x}-B \tau_{x}<0\right)}\right. \\
& \stackrel{\operatorname{sMp}}{=} \frac{1}{2} P\left(\tau_{x} \leq t\right)=\frac{1}{2} P\left(\max _{0 \leq u \leq t} B_{u} \geq x\right)
\end{aligned}
$$

Now $P\left(\max _{0 \leq u \leq t} B_{u} \geq x\right)=P\left(B_{t} \geq x\right)+P\left(\max _{0 \leqslant u \leqslant t} B_{u} \geq x, B_{t}<x\right)$

$$
\Rightarrow P\left(\max _{0<\cup \in t} B_{u} 2 x\right)=2 P\left(B_{t} \geq x\right)=P\left(\left|B_{t}\right| \geq x\right)
$$

Application of the RP: distribution of the hitting time τ_{x}
By definition, $\tau_{x} \leq t \Leftrightarrow \max _{0 \leq u \leq t} B_{t} \geq x$, so

$$
\begin{aligned}
P\left(\tau_{x} \leq t\right) & = \\
& = \\
& =
\end{aligned}
$$

$$
\Rightarrow \text { p.d.f. of } \tau_{x} \quad f_{\tau_{x}}(t)=
$$

Thu . $F_{\tau_{x}}(t)=\sqrt{\frac{2}{\pi}} \int_{x / \sqrt{t}}^{\infty} e^{-\frac{v^{2}}{2}} d v$,

$$
f_{\tau_{x}}(t)=\frac{x}{\sqrt{2 \pi}} t^{-3 / 2} e^{-\frac{x^{2}}{2 t}}
$$

Zeros of BM
Denote by $\theta(t, t+s)$ the probability that $B_{u}=0$ on $(t, t+s)$

$$
\theta(t, t+s):=
$$

Thy. For any $t, s>0$

$$
\theta(t, t+s)=
$$

Proof Compute $P\left(B_{u}=0\right.$ for some $\left.u \in(t, t+5]\right)$ by conditioning on the value of B_{t}.

$$
\theta(t, t+s)=
$$

Define $\tilde{B}_{u}=B_{t+u}-B_{t}$. Then

$$
P\left(B_{u}=0 \text { on }(t, t+s] \mid B_{t}=x\right)=
$$

$$
(* *)
$$

Zeros of BM
Plugging (**) into (*) gives

$$
\begin{aligned}
& \theta(t, t+s)= \int_{-\infty}^{+\infty} P\left(B_{u}=x \text { for some } u \in(0,5]\right) \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
&= \int_{0}^{+\infty} P\left(B_{u}=x \text { for some } u t(0, s]\right) \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
&+\int_{0}^{\infty} P\left(B_{u}=-x \text { for some } u \in(0, s]\right) \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x \\
&=
\end{aligned}
$$

Finally, $P\left(B_{u}=x>0\right.$ for some $\left.u \in(0, s]\right)=$

$$
(*)=\int_{0}^{\infty} \sqrt{\frac{2}{\pi t}} e^{-\frac{x^{2}}{2 t}}\left(\int_{0}^{5} \frac{x}{\sqrt{2 \pi}} y^{-3 / 2} e^{-\frac{x^{2}}{2 y}} d y\right) d x=
$$

Zeros of BM

$$
\begin{aligned}
& \int_{0}^{\infty} x e^{-\frac{x^{2}}{2}\left(\frac{1}{t}+\frac{1}{y}\right)} d x= \\
& \Rightarrow(x)=
\end{aligned}
$$

Now use the change of variable $z=\sqrt{\frac{y}{t}}, d y=2 t d z$

$$
\begin{aligned}
(*)=\frac{\sqrt{t}}{\pi} \int_{0}^{\sqrt{s / t}} \frac{1}{t\left(1+z^{2}\right) \sqrt{t} z} \cdot 2 t d z=\frac{2}{\pi} \int_{0}^{\sqrt{s / t}} \frac{1}{1+z^{2}} d z & =\frac{2}{\pi} \arctan \left(\sqrt{\frac{s}{t}}\right) \\
& =\frac{2}{\pi} \arccos \left(\sqrt{\frac{t}{s+t}}\right) \\
& \uparrow \text { exercise }
\end{aligned}
$$

Remark Let $T_{0}:=\inf \left\{t>0: B_{t}=0\right\}$. Then $P\left(T_{0}=0\right)=1$
There is a sequence of zeros of $B_{t}(w)$ converging to 0 . To understand the structure of the set of zeros \rightarrow Cantor set

Behavior of BM as $t \rightarrow \infty$
Thu. Let $\left(B_{t}\right)_{t \geq 0}$ be a (standard) BM. Then

$$
P\left(\sup _{t \geqslant 0} B_{t}=+\infty, \inf _{t \geqslant 0} B_{t}=-\infty\right)=1
$$

(BM "oscilates with increasing amplitude")
Proof. Denote $Z=\sup _{t \geq 0} B_{t}$. Then for any $c>0$

$$
c Z=
$$

By property (iii), $C B_{t / c^{2}}$ is a standard $B M$, so cZ has the same distribution as $Z \Rightarrow P(Z=0)=p, P(Z=\infty)=1-p$

$$
\begin{aligned}
p= & P(Z=0) \\
& \Rightarrow P(Z=0)=0, P(Z=\infty)=1 . \text { Similarly for } \inf _{t \geq 0} B_{t}
\end{aligned}
$$

Sample paths of $\left(B_{t}\right)_{t}$ are not differentiable
Thu. $P\left(B_{t}\right.$ is not differentiable at zero $)=1$
Proof. $P\left(\sup _{t 20} B_{t}=\infty, \inf _{t \geqslant 0} B_{t}=-\infty\right)=1 . \quad(\vec{A})$
Consider $\quad \tilde{B}_{t}=t B_{1 / t} .\left(\tilde{B}_{t}\right)_{t \geq 0}$ is a $B M$ (by property (iv))
By (*), for any $\varepsilon>0 \quad \exists t<\varepsilon, s<\varepsilon$ such that
$\bar{B}_{t}>0, \tilde{B}_{s}<0 \Rightarrow$ only differentiable if $\tilde{B}_{0}^{\prime}=0$
But if $\bar{B}_{0}^{\prime}=0$, then
for some $t>0$ and all $0<s<t$,
which imples that for all $0<s<t$, which contradicts to (*)
Thm $P\left(\left(B_{t}\right)_{t \geq 0}\right.$ is nowhere differentiable $)=1$

Reflected BM
Def. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard $B M$. The stochastic process $\left|B_{t}\right|= \begin{cases}, & \text {, if } B(t) \geq 0 \\ , & \text { if } B(t)<0\end{cases}$ is called reflected BM.
Think of a movement in the vicinity. of a boundary.
Moments: $E\left(R_{t}\right)=$

$$
\operatorname{Var}\left(R_{t}\right)=E\left(B_{t}^{2}\right)-\left(E\left(\left|B_{t}\right| \mid\right)^{2}=\right.
$$

Transition density: $P\left(R_{t} \leq y \mid R_{0}=x\right)=$

$$
=\quad \Rightarrow p_{t}(x, y)=
$$

Thm (Lévy) Let $M_{t}=\max _{0 \leq u \leq t} B_{u}$. Then $\left(M_{t}-B_{t}\right)_{t \geq 0}$ is a reflected BM.

Reflected BM

Brownian bridge
Brownian bridge is constructed from a $B M$ by conditioning on the event $\{B(0)=0, B(1)=0\}$.

Thy 1. Brownian bridge is a continuous Gaussian process on [0,1] with mean O and covariance function

$$
\Gamma(s, t)=
$$

Brownian motion with drift
Def Let $\left(B_{t}\right)_{t \geq 0}$ be a standard $B M$. Then for $\mu \in \mathbb{R}$ and $\sigma>0$ the process $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=, t \geq 0$ is called the Brownian motion with drift μ and variance paremeter σ^{2}.
Remark BM with drift μ and variance paremeter σ is a stochastic process $\left(X_{t}\right)_{t \geq 0}$ satisfying

1) $X_{0}=0,\left(X_{t}\right)_{t \geq 0}$ has continuous sample paths
2) $\left(X_{t}\right)_{t \geq 0}$ has independent increments
3) For $t>s \quad X_{t}-X_{s}$ -

In particular. $X_{t} \sim \quad \Rightarrow X_{t}$ is not centered. not symmetric w.r.t. the origin

Brownian motion with drift

$$
\begin{aligned}
& \mu=-0.5 \\
& \sigma^{2}=4
\end{aligned}
$$

Gambler's ruin problem for BM with drift
Let $\left(X_{t}\right)_{t \geq 0}$ be a $B M$ with drift $\mu \in \mathbb{R}$ and variance parameter $\sigma^{2}>0$. Fix $a<x<b$ and denote

$$
\begin{aligned}
& T=T_{a b}=\min \left\{t \geq 0: X_{t}=a \text { or } X_{t}=b\right\}, \text { and } \\
& u(x)=P\left(X_{T}=b \mid X_{0}=x\right) .
\end{aligned}
$$

Theorem.
(i) $u(x)=$
(ii) $E\left(T_{a b} \mid X_{0}=x\right)=$

No proof

Example
Fluctuations of the price of a certain share is modeled by the BM with drift $\mu=1 / 10$ and variance $\sigma^{2}=4$. You buy a share at $100 \$$ and plan to sell it if its price increases to $110 \$$ or drops to $95 \$$.
(a) What is the probability that you will sell at profit?
(b) What is the expected time until you sell the share?

Denote by $\left(X_{t}\right)_{t \geq 0}$ a BM with drift $\frac{1}{10}$ and variance 4 , $x=, b=, a=$. Then $2 \mu / \sigma^{2}=\quad$ and
(a) $P\left(X_{T}=110 \mid X_{0}=100\right)=$
(b) $E\left(T \mid X_{0}=100\right)=$

Maximum of a BM with negative drift
Thm Let $\left(X_{t}\right)_{t \geq 0}$ be a BM with drift $\mu<0$, variance σ^{2} and $X_{0}=0$. Denote $M=\max _{t \geqslant 0} X_{t}$. Then

Proof. $X_{0}=0$, therefore $M \geq 0$. For any $b>0$

$$
\begin{aligned}
P(M>b) & = \\
& =
\end{aligned}
$$

$$
P(M>b)=
$$

Geometric BM
Def. Stochastic process $\left(Z_{t}\right)_{t \geq 0}$ is called a geometric
Brownian motion with drift parameter α and variance 6^{2} if $\quad X_{t}=\quad$ is a BM with drift $\mu=\alpha-\frac{1}{2} \sigma^{2}$ and variance σ^{2}.
In other words, $Z_{t}=$, where $\left(B_{t}\right)_{t \geq 0}$ is a standard $B M$ and $z>0$ is the starting point $Z_{0}=z$.
If $0 \leq t_{1}<t_{2}<\cdots<t_{n}$, then $\frac{Z_{t_{i}}}{Z_{t_{i-1}}}=$
Since B has independent increments
$\frac{Z_{t_{1}}}{Z_{t_{0}}}, \frac{Z_{t_{2}}}{Z_{t_{1}}}, \ldots, \frac{Z_{t_{n}}}{z_{t_{n-1}}}$ are independent and

$$
\begin{array}{ll}
\frac{Z_{t_{n}}}{Z_{t_{0}}}= & \tau_{t_{n-1}} \quad \text { "relative change of price }= \\
& \leftarrow \text { product of indepentent relative changes" }
\end{array}
$$

Expectation of Geometric BM
Let $\left(Z_{t}\right)_{t z 0}$ be geometric BM with paremeters α and 6 .
Then

$$
\begin{aligned}
& E\left(Z_{t} \mid Z_{0}=z\right)= \\
& E\left(e^{6 B_{t}}\right)= \\
& \Rightarrow E\left(Z_{t} \mid Z_{0}=z\right)=Z e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right) t} e^{t \frac{\sigma^{2}}{2}}=
\end{aligned}
$$

Remark
It can be shown that for $0<\alpha<\frac{1}{2} \sigma^{2} \quad Z_{t} \rightarrow 0$ as $t \rightarrow \infty$ At the same time, for $\alpha>0 E\left(Z_{t}\right) \rightarrow \infty$.

Variance of geometric BM

$$
\begin{gathered}
E\left(Z_{t}^{2} \mid Z_{0}=z\right)= \\
= \\
\operatorname{Var}\left(Z_{t} \mid Z_{0}=z\right)=
\end{gathered}
$$

Theorem.
Let $\left(Z_{t}\right)_{t \geq 0}$ be geometric BM with paremeters α and σ^{2}.
Then
(i) $E\left(z_{t} \mid z_{0}=z\right)=z e^{\alpha t}$
(ii) $\operatorname{Var}\left(z_{t} \mid Z_{0}=z\right)=z^{2} e^{2 \alpha t}\left(e^{\sigma^{2} t}-1\right)$

Gambler's ruin for geometric BM
Let $\left(Z_{t}\right)_{t \geq 0}$ be geometric $B M$ with paremeters α and σ^{2}.
Let $A<K<B$, and denote $T=\min \left\{t: \frac{Z_{t}}{Z_{0}}=A\right.$ or $\left.\frac{z_{t}}{z_{0}}=B\right\}$.
Theorem

$$
P\left(\frac{Z_{T}}{Z_{0}}=B\right)=
$$

Example Fluctuations of the price are modeled by a geometric BM with drift $\alpha=0.1$ and variance $\sigma^{2}=4$. You buy a share at $100 \$$ and plan to sell it if its price increases to $110 \$$ or drops to $95 \$$.
Take $A=, B=, 2 \alpha / \sigma^{2}=, 1-2 \alpha / \sigma^{2}=$

$$
P\left(X_{T}=110 \mid X_{0}=100\right)=
$$

