MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
Lecture B00: math.ucsd edu/~ynemish/teaching/180ch

Today: Brownian motion

Next: PK 8.1-8.2

Week 9:

- homework 7 (due Friday, May 27)
- HW6 regrades are active on Gradescope until May 28, 11 PM

Brownian motion. History

- Critical observation: Robert Brown (1827), botanist, movement of pollen grains in water
- First (?) mathematical analysis of Brownian motion: Louis Bachelier (1900), modeling stock market fluctuations
- Brownian motion in physics: Albert Einstein (1905) and Marian Smoluchowski (1906), explained the phenomenon observed by Brown
- First rigorous construction of mathematical Brownian motion: Norbert Wiener (1923)

Brownian motion $=$ Wiener process in mathematics

Brownian motion. Motivation

- almost all interesting classes of stochastic processes contain Brownian motion : BM is a
- martingale
- Markov process
- Gaussian process
- Lévy process (independent stationary increments)
- BM allows explicit calculations, which are impossible for more general objects
- BM can be used as a building block for other processes
- BM has many beautiful mathematical properties

Brownian motion. Definition
Def. Brownian motion with diffusion coefficient 6^{2} is a continuous time stochastic process $\left(B_{t}\right)_{t \geq 0}$ satisfying
(i) $B(0)=0, B(t)$ is continuous as a function of t
(ii) For all $0 \leq s<t<\infty \quad B(t)-B(s)$ is a Gaussian riv. with mean 0 and variance $\sigma^{2}(t-s)$
(iii) The increments of B are independent: if $0 \leq t_{0}<t_{1}<\cdots<t_{n}$ then $\left\{B_{t_{i}}-B_{t i-1}\right\}_{i=1}^{n}$ are independent Gaussian r.v.s

$$
\sigma^{2}=1 \leftarrow \text { standard BM }
$$

BM as a continuous time continuous space Markov process
Recall: contimous time discrete space MC $\left(X_{t}\right)_{t \geq 0}$ is characterized by the transition probability function

$$
P_{i j}(t)=P\left(X_{s+t}=j \mid X_{s}=i\right)
$$

$\left(\left(X_{t}\right)_{t \geq 0}\right.$ has stationary transition probability functions) In particular, $P\left(X_{s+t} \in A \mid X_{s}=i\right)=\sum_{j \in A} P_{i j}(t)$
In the continuous state space case the transition probabilities are described by the transition density
(i) $p_{t}(x, y) \geq, \int_{-\infty}^{+\infty} p_{t}(x, y) d y=1 \quad \forall t, x$
(ii) $P\left(X_{s+t} \in A \mid X_{s}=x\right)=\int_{A} P_{t}(x, y) d y$ for any $x \in \mathbb{R}, A \subset \mathbb{R}$ A τ density of X_{s+t} given $X_{s}=x$

BM as a continuous time continuous space Markov process
Propotition. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard BM.
Then $\left(B_{t}\right)_{t \geq 0}$ is a Markov process with transition density

$$
p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t}(y-x)^{2}}
$$

Informal explanation: Independent stationary increments imply that $\left(B_{t}\right)_{t \geq 0}$ is Markov with stationary transition density. Given $B_{s}=x_{1} \quad B_{s+t}=B_{s}+B_{s+t}-B_{s} \sim N(x, t)$ information before time S is irrelevant.

$$
\begin{gathered}
P\left(B_{s+t} \leq u \mid B_{s}=x\right)=P\left(B_{s}+\left(B_{s+t}-B_{s}\right) \leq u \mid B_{s}=x\right) \\
=P\left(x+B_{t+s}-B_{s} \leq u\right)=\int_{-\infty}^{u} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(y-x)^{2}}{2 t}} d y
\end{gathered}
$$

BM as a continuous time continuous space Markov process
Let $t_{1}<t_{2}<\cdots<t_{n}<\infty, \quad\left(a_{i}, b_{i}\right) \subset \mathbb{R}$. Then

$$
\begin{aligned}
P\left(B_{t_{1}}\right. & \in\left(a_{1}, b_{1}\right), B_{\left.t_{2} \in\left(a_{2}, b_{2}\right)\right)=} \\
& =\int_{-\infty}^{+\infty} P\left(B_{t_{1}} \in\left(a_{1}, b_{1}\right), B_{\left.t_{2} \in\left(a_{2}, b_{2}\right) \mid B_{t_{1}}=x_{1}\right) P_{t_{1}}\left(0, x_{1}\right) d x_{1}}^{b_{1}} P\left(B_{t_{2}} \in\left(a_{2}, b_{2}\right) \mid B_{t_{1}}=x_{1}\right) P_{t_{1}}\left(0, x_{1}\right) d x_{1}\right. \\
& =\int_{a_{1}} P\left(P_{t_{1}}\left(0, x_{1}\right) P_{t_{2}-t_{1}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}\right. \\
& =\iiint_{\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)}
\end{aligned}
$$

More generally,

$$
\begin{aligned}
& P\left(B_{t_{1}} \in\left(a_{1}, b_{1}\right), B_{t_{2}} \in\left(a_{2}, b_{2}\right), \ldots, B_{t_{n}} \in\left(a_{n}, b_{n}\right)\right) \\
& \quad=\int_{\cdots} \cdots \int_{t_{1}}\left(0_{1} x_{1}\right) P_{t_{2}-t_{1}}\left(x_{1}, x_{4}\right) \cdots P_{t_{n-t}-1}\left(x_{n-1}, x_{n}\right) d x_{1} \cdots d x_{n} \\
& \left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)
\end{aligned}
$$

Diffusion equation. Transition semigroup. Generator
Let $\left(X_{t}\right)_{t \geq 0}$ be a Markov process.
Suppose we want to know how the distribution of X_{t} evolves in time:

$$
E\left(f\left(X_{s+t}\right) \mid X_{s}=x\right)=\int_{-\infty}^{+\infty} f(y) P_{t}^{X}(x, y) d y=: P_{t} f(x)
$$

We call $\left(P_{t}\right)_{t \geq 0}$ the transition semigroup $\left[P_{s, t} f(x)=P_{s}\left(P_{t} f(x)\right)\right]$ Proposition Let $\left(P_{t}\right)_{t \geq 0}$ be the transition semigroup of BM.
Then (i) the "infinitesimal generator" of $P(t)$ is given by

$$
Q f(x)=\frac{1}{2} \frac{d^{2}}{d x^{2}} f(x)
$$

(ii) density P_{t} satisfies $\frac{\partial}{\partial t} P_{t}(x, y)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} P_{t}(x, y) \quad[K$ backward $]$
(iii)density P_{t} satisfies $\frac{\partial}{\partial t} P_{t}(x, y)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}} P_{t}(x, y)[K$ forward] τ diffusion equation

BM as a Gaussian process
Def. Stochastic process $\left(X_{t}\right)_{t \geq 0}$ is called a Gaussian process if for any $0 \leq t_{1}<t_{2}<\cdots<t_{n}$
$\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is a Gaussian vector, or equivalently for any $c_{1}, \ldots, c_{n} \in \mathbb{R}$
is a Gaussian riv.
Recall that the distribution of a Gaussian vector is uniquelly defined by its mean and covariance matrix.
Similarly, each Gaussian process is uniquely described by $\mu(t)=E(X t)$ and $\quad \begin{array}{r}\Gamma(s, t)=\operatorname{Cov}\left(X_{s}, X_{t}\right) \geq 0 \\ t \text { covariance function }\end{array}$

BM as a Gaussian process
Proposition BM is a Gaussian process with and

Proof. For any $0 \leq t_{1}<t_{2}<\cdots<t_{n}, B_{t j}-B_{t_{j-1}}$ are indep.
Gaussian, thus

$$
\sum_{i=1}^{n} C_{i} B_{t i}=
$$

is also Gaussian.
By definition

$$
\text { Let } s<t \text {. }
$$

Then $\quad \Gamma(s, t)=$

$$
\begin{aligned}
& = \\
& = \\
& =
\end{aligned}
$$

Some properties of BM
Proposition. Let $\left(B_{t}\right)_{t 20}$ be a standard $B M$. Then
(i) For any $s>0$, the process is a BM independent of $\left(B_{u}, 0 \leq u \leq 5\right)$.
(ii) The process is a BM
(iii) For any $c>0$, the process is a BM
(iv) The process $\left(X_{t}\right)_{t \geq 0}$ defined by for $t>0$ is a BM.
Proof (i) Define $X_{t}=B_{t+s}-B_{s}$. Then
\Rightarrow independent Gaussian increments,
$\left(X_{t}\right)_{t \geq 0}$ has continuous paths \Rightarrow
(iv) X_{t} is Gaussian, for sst

Proof of $\lim _{t \rightarrow 0} X_{t}=0$ is more technical, thus omitted.

