MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA Lecture B00: math.ucsd.edu/~ynemish/teaching/180ch

Today: Martingales

Next: PK 8.1

Week 9:

- homework 7 (due Friday, May 27)

Maximal inequality for nonegative martingales
Thm. Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale with nonnegative values.
For any $\lambda>0$ and $m \in \mathbb{N}$

$$
\begin{equation*}
P\left(\max _{0 \leq n \leq m} X_{n} \geq \lambda\right) \leq \frac{E\left(X_{0}\right)}{\lambda} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\max _{n \geq 0} X_{n} \geq \lambda\right) \leq \frac{E\left(X_{0}\right)}{\lambda} \tag{2}
\end{equation*}
$$

Proof. We prove (1), (2) follows by taking the limit $m \rightarrow \infty$. Take the vector $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and partition the sample space wry the index of the first r.v. rising above λ

$$
1=\mathbb{1}_{x_{0} 2 \lambda}+\mathbb{1}_{x_{0}<\lambda, x_{1} \geq \lambda}+\cdots+\mathbb{1}_{x_{0}<\lambda_{1} \ldots, x_{m-1}<\lambda_{1} x_{m 2 \lambda}}+\mathbb{1}_{x_{0}<\lambda_{1} \ldots, x_{m<\lambda}}
$$

Compute $E\left(X_{m}\right)=E\left(X_{m} \cdot 1\right)$ using the above partition

Proof of the maximal inequality

$$
\begin{aligned}
E\left(X_{m}\right) & =\sum_{n=0}^{m} E\left(X_{m} \mathbb{1}_{x_{0}<\lambda, \ldots, x_{n-1}<\lambda, x_{n} \geq \lambda}\right)+E\left(X_{m} \mathbb{1}_{x_{0}<\lambda, \ldots, x_{m<\lambda}}\right) \\
& \geq \sum_{n=0}^{m} E\left(X_{m} \mathbb{1}_{x_{0}<\lambda_{1}, \ldots, x_{n-1}<\lambda, x_{n \geq \lambda}}\right)
\end{aligned}
$$

Compute $E\left(X_{m} \mathbb{1}_{x_{0}<\lambda, \ldots, x_{n-1}<\lambda, x_{n} \geq \lambda}\right)$ by conditioning on

$$
\begin{aligned}
& X_{0}, X_{1}, \ldots, X_{n-1}, X_{n}: \\
& E\left(X_{m} \mathbb{1} x_{0}<\lambda, \ldots, x_{n-1}<\lambda, X_{n} \geq \lambda\right) \\
& = \\
& = \\
& =
\end{aligned}
$$

Sum for all n

$$
E\left(X_{m}\right) \geq
$$

Example
A gambler begins with a unit amount of money and faces a series of independent fair games. In each game the gamblers bets fraction p of his current fortune, wins with probability $\frac{1}{2}$, loses with probability $\frac{1}{2}$. Estimate the probability that the gambler ever doubles the initial fortune.
Denote by $Z_{n}, n \geq 0$, the gambler's fortune after n-th game. Denote
Then

Martingale transform
In the previous example the stake in n-th game is $p Z_{n-1}$. What if we choose another strategy?
Def Let $\left(X_{n}\right)_{n \geq 0}$ be a nonnegative martingale, and let $\left(C_{n}\right)_{n \geq 0}$ be a stochastic process with $C_{n}=f_{n}\left(X_{0}, \ldots, X_{n-1}\right)$. Then the stochastic process is called the
Think of $X_{k}-X_{k-1}$ as the winning per unit stake in k-th game

- C_{k} as your stake in k-th game decision is made based on the previous history
- $(c \cdot X)_{n}$ as total winnings up to time n

Martingale transform
Prop. Let $z_{n}=x_{0}+(C \cdot x)_{n}$. Let $C_{k}>0$ bounded if $z_{k-1}>0$ and $C_{k}=0$ if $Z_{k-1}=0$. Then $\left(Z_{n}\right)_{n \geq 0}$ is a martingale
Proof: $E\left(z_{n+1} \mid z_{0}, \ldots, z_{n}\right)=$
$=$
Note that
If $Z_{n}>0$, then $C_{1}>0, \ldots, C_{n}>0$,

$$
\begin{aligned}
E\left(z_{n+1} \mid z_{0}, \ldots, z_{n}\right) & = \\
& =
\end{aligned}
$$

If $Z_{n}=0$, then $C_{n+1}=0$ and $E\left(Z_{n+1} \mid Z_{0}, \ldots, Z_{n}\right)=0=Z_{n}$

Gambling example:
Start from the initial fortune $X_{0}=1$. Define

$$
Z_{n}=
$$

fortune after n-th game with strategy C
Then $\left(Z_{n}\right)_{n \geq 0}$ is a nonnegative martingale, $E\left(Z_{0}\right)=1$

$$
\Rightarrow
$$

Convergence of nonnegative martingales
Thu.
If $\left(X_{n}\right)_{n \geq 0}$ is a nonnegative (super) martingale, then with probability 1
and

Example
An urn initially contains one red ball and one green ball. Choose a ball and return it to the urn together with another ball of the same color. Repeat. Denote by X_{n} the fraction of red ball after n iterations.

Example (cont.)
(i) $\left(X_{n}\right)_{n \geq 0}$ is a martingale

Denote by R_{n} the number of red balls after n-th iteration

$$
R_{n}=
$$

Then

$$
\begin{gathered}
E\left(X_{n+1} \mid X_{0}, \ldots, X_{n}\right)= \\
=
\end{gathered}
$$

(ii) X_{n} is nonnegative \Rightarrow
(iii) Compute the distribution of X_{∞}

$$
\begin{aligned}
& P\left(X_{n}=\frac{k}{n+2}\right)=\frac{1}{n+1} \quad \text { for } \quad k \in\{1,2, \ldots, n+1\} \\
& P\left(X_{\infty} \leq x\right)=x, x \in(0,1) \Rightarrow X_{\infty} \sim U_{n i} f[0,1)
\end{aligned}
$$

Brownian motion

Brownian motion. History

- Critical observation: Robert Brown (1827), botanist, movement of pollen grains in water
- First (?) mathematical analysis of Brownian motion: Louis Bachelier (1900), modeling stock market fluctuations
- Brownian motion in physics: Albert Einstein (1905) and Marian Smoluchowski (1906), explained the phenomenon observed by Brown
- First rigorous construction of mathematical Brownian motion: Norbert Wiener (1923)

Brownian motion $=$ Wiener process in mathematics

Brownian motion. Motivation

- almost all interesting classes of stochastic processes contain Brownian motion : BM is a
- martingale
- Markov process
- Gaussian process
- Lévy process (independent stationary increments)
- BM allows explicit calculations, which are impossible for more general objects
- BM can be used as a building block for other processes
- BM has many beautiful mathematical properties

Brownian motion. Definition
Def. Brownian motion with diffusion coefficient σ^{2} is a continuous time stochastic process $\left(B_{t}\right)_{t \geq 0}$ satisfying
(i)
(ii)
(iii)

$$
\sigma^{2}=1 \leftarrow \text { standard BM }
$$

BM as a continuous time continuous space Markov process
Recall: contimous time discrete space MC $\left(X_{t}\right)_{t \geq 0}$ is characterized by the transition probability function

$$
P_{i j}(t)=
$$

$\left(\left(X_{t}\right)_{t \geq 0}\right.$ has stationary transition probability functions) In particular, $P\left(X_{s+i} \in A \mid X_{s}=i\right)=$
In the continuous state space case the transition probabilities are described by the transition density
(i)
(ii) $P\left(X_{s+t} \in A \mid X_{s}=x\right)=$ for any $x \in \mathbb{R}, A \subset \mathbb{R}$ τ density of X_{s+t} given $X_{s}=x$

BM as a continuous time continuous space Markov process
Propotition. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard BM.
Then $\left(B_{t}\right)_{t \geq 0}$ is a
with transition density

Informal explanation: Independent stationary increments imply that $\left(B_{t}\right)_{t \geq 0}$ is Markov with stationary transition density. Given $B_{s}=x_{1}$
information before time s is irrelevant.

$$
P\left(B_{s+t} \leq u \mid B_{s}=x\right)=
$$

BM as a continuous time continuous space Markov process
Let $t_{1}<t_{2}<\cdots<t_{n}<\infty, \quad\left(a_{i}, b_{i}\right) \subset \mathbb{R}$. Then

$$
P\left(B_{t_{1}} \in\left(a_{1}, b_{1}\right), B_{t_{2}} \in\left(a_{2}, b_{2}\right)\right)=
$$

$$
=
$$

$=$

$$
=
$$

More generally,

$$
\begin{aligned}
& P\left(B_{t_{1}} \in\left(a_{1}, b_{1}\right), B_{\left.t_{2} \in\left(a_{2}, b_{2}\right), \ldots, B_{t_{n}} \in\left(a_{n}, b_{n}\right)\right)} \quad=\int_{1} \cdots \int_{1} P_{t_{1}}\left(0, x_{1}\right) \rho_{t_{2}-t_{1}}\left(x_{1}, x_{6}\right) \cdots \rho_{t_{n-t}-t_{n-1}}\left(x_{n-1}, x_{n}\right) d x_{1} \cdots d x_{n}\right. \\
& \left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)
\end{aligned}
$$

Diffusion equation. Transition semigroup. Generator
Let $\left(X_{t}\right)_{t \geq 0}$ be a Markov process.
Suppose we want to know how the distribution of X_{t} evolves in time:

We call $\left(P_{t}\right)_{t \geq 0}$ the transition semigroup $\left[P_{s+t} f(x)=P_{s}\left(P_{t} f(x)\right)\right]$ Proposition Let $\left(P_{t}\right)_{t \geq 0}$ be the transition semigroup of BM. Then (i) the "infinitesimal generator" of $P(t)$ is given by
(ii) density p_{t} satisfies
(iii)density Pt satisfies
[K backward]
[K forward]
τ diffusion equation

