MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
Lecture B00: math.ucsd edu/~ynemish/teaching/180ch

Today: Martingales

Next: PK 8.1

Week 8:

- homework 6 (due Monday, May 16, week 8)

Midterm 2: Wednesday, May 18

Martingales
Definition. A stochastic process $\left(X_{n}, n \geq 0\right)$ is a martingale if for $n=0,1, \ldots$.
(a)
(b)

After taking the expectation of both sides of (b) we get that
$\left(X_{n}\right)_{n \geq 0}$ is a martingale \Rightarrow

- submartingale:
- supermartingale:

Examples of martingales
(i) Let X_{1}, X_{2}, \ldots be independent $R V$'s with $E\left(\left|X_{k}\right|\right)<\infty$ and $E\left(X_{k}\right)=0$. Define $S_{n}=X_{1}+\cdots+X_{n}, S_{0}=0$.
Then

$$
\Rightarrow
$$

(ii) Let X_{1}, X_{2}, \ldots be independent $R V$ with $X_{k} \geq 0, E\left(\left|X_{k}\right|\right)<\infty$ and $E\left(X_{k}\right)=1$. Define $M_{n}=X_{1} X_{2} \cdots X_{n}, M_{0}=1$.
Then

$$
\Rightarrow
$$

Example
Stock prices in a perfect market
Let X_{n} be the closing price at the end of day n of a certain publicly traded security such as a share or stock. Many scholars believe that in a perfect market these price sequences should be martingales. (see PK page 73 for more details).

History and gambling
Let $\left(X_{n}\right) n \geq 0$ be a stochastic process describing your total winnings in n games with unit stake.
Think of $X_{n}-X_{n-1}$ as your net winnings per unit stake in game $n, n \geq 1$, in a series of games, played at times $n=1,2, \ldots$.
In the martingale case

Some early works of martingales was motivated by gambling. Note that there exists a betting strategy called the "martingale system" \leftarrow doubling bets after losses

Some basic properties
Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale.

Proof

Exercise:

- Markov inequality: If $X_{n} \geq 0 \quad \forall n$, then for any $\lambda>0$

$$
\Rightarrow
$$

Maximal inequality for nonegative martingales
Thm. Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale with nonnegative values.
For any $\lambda>0$ and $m \in \mathbb{N}$
(1)
and
(2)

Proof. We prove (1), (2) follows by taking the limit $m \rightarrow \infty$. Take the vector $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and partition the sample space wry the index of the first r.v. rising above λ

Compute
using the above partition

Proof of the maximal inequality

$$
E\left(X_{m}\right)=
$$

$$
\geq
$$

Compute $E\left(X_{m} \mathbb{1}_{X_{0}<\lambda, \ldots, X_{n-1}<\lambda, X_{n} \geq \lambda}\right)$ by conditioning on

$$
\begin{aligned}
& X_{0}, X_{1}, \ldots, X_{n-1}, X_{n}: \\
& E\left(X_{m} \mathbb{1}_{\left.X_{0}<\lambda, \ldots, x_{n-1}<\lambda, X_{n} \geq \lambda\right)}=\right. \\
& = \\
& =
\end{aligned}
$$

Sum for all n

$$
E\left(X_{m}\right) \geq
$$

Example
A gambler begins with a unit amount of money and faces a series of independent fair games. In each game the gamblers bets fraction p of his current fortune, wins with probability $\frac{1}{2}$, loses with probability $\frac{1}{2}$. Estimate the probability that the gambler ever doubles the initial fortune.
Denote by $Z_{n}, n \geq 0$, the gambler's fortune after n-th game. Denote
Then

Martingale transform
In the previous example the stake in n-th game is $p Z_{n-1}$. What if we choose another strategy?
Def Let $\left(X_{n}\right)_{n \geq 0}$ be a nonnegative martingale, and let $\left(C_{n}\right)_{n \geq 0}$ be a stochastic process with $C_{n}=f_{n}\left(X_{0}, \ldots, X_{n-1}\right)$. Then the stochastic process is called the
Think of $X_{k}-X_{k-1}$ as the winning per unit stake in k-th game

- C_{k} as your stake in k-th game decision is made based on the previous history
- $(c \cdot X)_{n}$ as total winnings up to time n

Martingale transform
Prop. Let $z_{n}=x_{0}+(C \cdot x)_{n}$. Let $C_{k}>0$ bounded if $z_{k-1}>0$ and $C_{k}=0$ if $Z_{k-1}=0$. Then $\left(Z_{n}\right)_{n \geq 0}$ is a martingale
Proof: $E\left(z_{n+1} \mid z_{0}, \ldots, z_{n}\right)=$
$=$
Note that
If $Z_{n}>0$, then $C_{1}>0, \ldots, C_{n}>0$,

$$
\begin{aligned}
E\left(z_{n+1} \mid z_{0}, \ldots, z_{n}\right) & = \\
& =
\end{aligned}
$$

If $Z_{n}=0$, then $C_{n+1}=0$ and $E\left(Z_{n+1} \mid Z_{0}, \ldots, Z_{n}\right)=0=Z_{n}$

Gambling example:
Start from the initial fortune $X_{0}=1$. Define

$$
Z_{n}=
$$

fortune after n-th game with strategy C
Then $\left(Z_{n}\right)_{n \geq 0}$ is a nonnegative martingale, $E\left(Z_{0}\right)=1$

$$
\Rightarrow
$$

Convergence of nonnegative martingales
Thu.
If $\left(X_{n}\right)_{n \geq 0}$ is a nonnegative (super) martingale, then with probability 1
and

Example
An urn initially contains one red ball and one green ball. Choose a ball and return it to the urn together with another ball of the same color. Repeat. Denote by X_{n} the fraction of red ball after n iterations.

Example (cont.)
(i) $\left(X_{n}\right)_{n \geq 0}$ is a martingale

Denote by R_{n} the number of red balls after n-th iteration

$$
R_{n}=
$$

Then

$$
\begin{gathered}
E\left(X_{n+1} \mid X_{0}, \ldots, X_{n}\right)= \\
=
\end{gathered}
$$

(ii) X_{n} is nonnegative \Rightarrow
(iii) Compute the distribution of X_{∞}

$$
\begin{aligned}
& P\left(X_{n}=\frac{k}{n+2}\right)=\frac{1}{n+1} \quad \text { for } \quad k \in\{1,2, \ldots, n+1\} \\
& P\left(X_{\infty} \leq x\right)=x, x \in(0,1) \Rightarrow X_{\infty} \sim U_{n i} f[0,1)
\end{aligned}
$$

