MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
Lecture B00: math.ucsd.edu/~ynemish/teaching/180ch

Today: Asymptotic behavior of renewal processes

Next: PK 2.5, Durrett 5.1-5.2
Week 7:

- homework 6 (due Monday, May 16, week 8)

Midterm 2: Wednesday, May 18

Example: Age replacement policies (PK, P. 363)
X_{i} - lifetime of i-th component , $F_{x_{i}}(t)=F(t)$
Y_{i} - times between failures
$N(t)=\#$ replacements on $[0, t], Q(t)=\#$ failure replacements on $[0, t]$
Last time:
$\frac{E(N(t))}{t} \approx \frac{1}{\mu_{T}}$ for large t
$Q(t)$ renewal process with interrenewal times Y_{i} and $Y_{1}=L \cdot T+Z$ with $P(L \geq n)=(1-F(T))^{n}, P(Z \leq z)=\frac{F(z)}{F(T)}$

Example: Age replacement policies (PK, p. 363)
Now we can compute the long-run rate of the replacements due to failures

$$
\begin{aligned}
& E\left(y_{1}\right)=T E(L)+E(Z) \\
& E(L)=\sum_{n=1}^{\infty} P(L \geq n)=\sum_{n=1}^{\infty}(1-F(T))^{n}=\frac{1-F(T)}{F(T)} \\
& E(Z)=\frac{\int_{0}^{1}(F(T)-F(z)) d x}{F(T)} \text {, so } \\
& \left.E\left(y_{1}\right)=\frac{1}{F(T)}(T(1-F / T))+\int_{0}^{T}(F(T)-F(x)) d x\right)=\frac{\mu_{T}}{F(T)}
\end{aligned}
$$

Applying the elementary renewal theorem to $Q(t)$

$$
\frac{E(Q(t))}{t}=\frac{F(T)}{\mu_{T}} \text { for large } t
$$

Example: Age replacement policies (PK, p. 363)
Suppose that the cost of one replacement is K, and each replacement due to a failure costs additional c. Then, in the long run the total amount spent on the replacements of the component per unit of time is given by

$$
C(T) \approx k \cdot \frac{1}{\mu_{T}}+c \cdot \frac{F(T)}{\mu_{T}}=\frac{K+C F(T)}{\int_{0}^{T}(1-F(x)) d x}
$$

If we are given c, K and the distribution of the component's lifetime F, we can try to minimize the overall costs by choosing the optimal value of T.

Example: Age replacement policies (PK,p.363) $+1 \cdot \mathbb{1}_{(1,0)}$
For example, if $K=1, C=4$ and $X_{1} \sim$ Unif $[0,1] \quad\left(F(x)=x \mathbb{1}_{[0,1]}\right)$
For $T \in[0,1], \mu_{T}=\int_{0}^{T}(1-x) d x=T\left(1-\frac{T}{2}\right)$ and
the average (per unit of time) long-run costs are

$$
\begin{aligned}
& \quad C(T)=\frac{1+4 T}{T\left(1-\frac{T}{2}\right)} \\
& \frac{d}{d T} C(T)=\frac{2 T^{2}+T-1}{\left(T\left(1-\frac{T}{2}\right)\right)^{2}}=0 \quad T_{1}=-1, T_{2}=\frac{1}{2} \\
& T_{\text {min }}=\frac{1}{2} \\
& C\left(T_{\text {min }}\right)=8 \\
& C(1)=10>8
\end{aligned}
$$

Two component renewals
Consider the following model:

- $\left(X_{i}\right)_{i=1}^{\infty}$ are interrenewal times
- at each moment of time the system $S(t)$ can be in one of two states: $S(t)=0$ or $S(t)=1$
- random variables Y_{i} denote the part of X_{i} during which the system is in state $0,0 \leq Y_{i} \leq X_{i}$
- collection $\left(\left(X_{i}, Y_{i}\right)\right)_{i=1}^{\infty}$ is i.i.d.

Q : In the long run (for large t), what is the probability that the system is in state I at time t?

Two component renewals
Ohm. Then $E\left(X_{1}\right)<\infty, \lim _{t \rightarrow \infty} P(S(t)=0)=\frac{E\left(y_{1}\right)}{E\left(X_{1}\right)}$
Proof. Denote $g(t)=P(S(t)=0)$. Then

$$
g(t)=\int_{0}^{\infty} P\left(s(t)=0 \mid X_{1}=x\right) d F(x)
$$

If $t<x$, then $P\left(S(t)=0 \mid X_{1}=x\right)=P\left(Y_{1}>t \mid X_{1}=x\right)$
If $t \geqslant x$, then $P\left(S(t)=0 \mid X_{1}=x\right)=P(S(t-x)=0)=g(t-x)$

Two component renewals

$$
g(t)=\underbrace{\int_{t}^{\infty} P\left(y_{1}>t\left(X_{1}=x\right) d F(x)\right.}_{h_{n}^{\prime \prime}}+\underbrace{\int_{0}^{t} g(t-x) d F(x)}_{g * F(t)}
$$

Function g satisfies the renewal equation

$$
g(t)=h(t)+g * F(t)
$$

Note that $Y_{1} \leqslant X_{1}$, therefore $P\left(Y_{1}>t \mid X_{1}=x\right)=0$ for $x<t$,

$$
\begin{gathered}
h(t)=\int_{0}^{\infty} P\left(y_{1}>t \mid x_{1}=x\right) d F(x)=P\left(y_{1}>t\right) \geq 0 \\
\int_{0}^{\infty} h(t) d t=\int_{0}^{\infty} P\left(y_{1}>t\right) d t=E\left(y_{1}\right) \leq E\left(X_{1}\right)<\infty \\
E\left(y_{1}\right)
\end{gathered}
$$

From the key renewal theorem $\lim _{t \rightarrow \infty} g(t)=\frac{E\left(y_{1}\right)}{E\left(x_{1}\right)}$

Example: the Peter principle
Setting: - infinite population of candidates for certain position

- fraction p of the candidates are competent, $q=1-p$ are incompetent
- if a competent person is chosen, after time C_{i} he/she gets promoted
- if an incompetent person is chosen, he/she remains in the job until retirement (r.v. I j)
- once the position is open again, the process repeats

Question: What fraction of time, denoted f_{1} is the position held by an incompetent person on average in the long run?

Example: the Peter principle
Denote $X_{i}= \begin{cases}C_{i}, & \text { if occupied by a competent person } \\ I_{i}, & \text { if occupied by an incompetent person }\end{cases}$ $Y_{i}= \begin{cases}0, & \text { if occupied by a competent person } \\ I_{i}, & \text { if occupied by an incompetent person }\end{cases}$ KRT for two component renewals can be applied to $\left(\left(x_{i}, y_{i}\right)\right)_{i=1}^{\infty}$
If $S(t)=0$ if the person is incompetent, then

$$
\begin{aligned}
& \qquad \lim _{t \rightarrow \infty} P(S(t)=0)=\frac{E\left(Y_{1}\right)}{E\left(X_{1}\right)} \quad \text { and } \\
& f:=\lim _{t \rightarrow \infty} E\left(\frac{1}{t} \int_{0}^{t} \mathbb{1}_{\{S(u)=0\}} d u\right)=\lim _{t \rightarrow 0} \frac{1}{t} \int_{0}^{t} P(S(u)=0) d u=\frac{E\left(y_{1}\right)}{E\left(x_{1}\right)} \\
& \text { Finally, if } \quad \cdot E\left(C_{i}\right)=\mu \\
& \cdot E\left(I_{i}\right)=v
\end{aligned}, \text { then } f=\frac{E\left(y_{1}\right)}{E\left(X_{1}\right)}=\frac{(1-P) \nu}{\rho \mu+(1-p) \nu} .
$$

Example: the Peter principle
If we take $p=\frac{1}{2}, \mu=1, v=10$, then

$$
f=\frac{\frac{1}{2} \cdot 10}{\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 10}=\frac{10}{11}=0.909
$$

