MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
Lecture B00: math.ucsd edu/~ynemish/teaching/180ch

Today: Asymptotic behavior of renewal processes

Next: PK 7.5, Durrett 3.1, 3.3
Week 7:

- homework 6 (due Monday, May 16, week 8)

Midterm 2: Wednesday, May 18

Key renewal theorem
Thu (Key renewal theorem) Let h be locally bounded.
(a) If A satisfies $H=h+h * M$, then H is locally bounded and $\quad H=h+H * F \quad(*)$
(b) Conversely, if H is a locally bounded solution to ($*$), then $H=h+h * M(* *) \quad\left[\begin{array}{l}\text { convolution in the } \\ \text { Riemann-Stieltjes sense }\end{array}\right]$
(c) If h is absolutely integrable, then

$$
\lim _{t \rightarrow \infty} H(t)=\frac{\int_{h}^{\infty} h(x) d x}{\mu}
$$

Example. $H(t)=E\left(\gamma_{t}\right)$
Last time: $H(t)=\int_{t}^{\infty}(1-F(x)) d x+H * F(t)$
$H(t)=h(t)+h * M(t)$ with $h(t)=\int_{t}^{\infty}(1-F(x)) d x$

Example (cont)
In particular, $h(t)$

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{t}^{\infty}(1-F(x)) d x d t=\int_{0}^{\infty}\left(\int_{0}^{x}(1-F(x)) d t\right) d x \\
& =\int_{0}^{\infty}(1-F(x)) x d x=\frac{1}{2} E\left[X_{1}^{2}\right] \\
& =\frac{1}{2}\left(6^{2}+\mu^{2}\right)<\infty \Rightarrow h(t) \text { is (absolutely) integrable }
\end{aligned}
$$

\Rightarrow by part (c) of the key renewal theorem

$$
\lim _{t \rightarrow \infty} E\left(\gamma_{t}\right)=\frac{\sigma^{2}+\mu^{2}}{2 \cdot \mu}
$$

Similarly $\lim _{t \rightarrow \infty} E\left(\delta_{t}\right)=\frac{\sigma^{2}+\mu^{2}}{2 \mu}, \lim _{t \rightarrow \infty} E\left(\beta_{t}\right)=\frac{\sigma^{2}+\mu^{2}}{\mu}>\mu$

Example
What is the expected time to the next earthquake in the long run?

For $X_{1} \sim$ Unit $[0,1]$

$$
E\left(X_{1}^{2}\right)=\int_{0}^{1} x^{2} d x=\frac{1}{3}=\sigma^{2}+\mu^{2}
$$

therefore, $\lim _{t \rightarrow \infty} E\left(\gamma_{t}\right)=\frac{\sigma^{2}+\mu^{2}}{2 \mu}=\frac{\frac{1}{3}}{2 \cdot \frac{1}{2}}=\frac{1}{3}$
And the long run expected time between two consecutive earthquakes is $\frac{2}{3}>\frac{1}{2}=E\left(X_{1}\right)$

Remark: moments of nonnegative r.v.s
Proposition. Let X be a nonnegative random variable.
Then

$$
\begin{aligned}
E\left(X^{n}\right) & =n \int_{0}^{\infty} x^{n-1} P(X>x) d x & n=1: E(X)=\int_{0}^{\infty}(1-F(x)) d x \\
& =n \int_{0}^{\infty} x^{n-1}(1-F(x)) d x & n=2: E\left(x^{2}\right)=2 \int_{0}^{\infty} x(1-F(x)) d x
\end{aligned}
$$

Proof.
$x \geq 0 \Rightarrow x^{n} \geq 0$. Using the "tail" formula for the expectation of nonnegative random variables

$$
E\left(x^{n}\right)=\int_{0}^{\infty} P\left(x^{n}>t\right) d t=\int_{0}^{\infty} P\left(x>t^{1 / n}\right) d t
$$

After the change of variable $x=t^{1 / n}$ we get

$$
E\left(X^{n}\right)=n \int_{0}^{\infty} x^{n-1} P(X>x) d x=n \int_{0}^{\infty} x^{n-1}(1-F(x)) d x
$$

Remark. $M(t)$ is finite for all t
Proposition. Let $N(t)$ be a renewal process with interrenewal times X_{i} having distribution F. If there exist $c>0$ and $\alpha \in(0,1)$ such that $P(X,>c)>\alpha$, then $M(t)=E(N(t))<\infty \quad \forall t$

Proof: Recall that $M(t)=\sum_{k=1}^{\infty} P\left(W_{k} \leq t\right)=\sum_{k=1}^{\infty} P\left(\sum_{j=1}^{k} X_{j} \leq t\right)$
Fix $t>0, L \in \mathbb{N}$ such that $c \cdot L>t$. Then

$$
P\left(\sum_{j=1}^{L} X_{j}>t\right) \geq P\left(X_{1}>c, X_{2}>c_{1}, \ldots, X_{L}>c\right)>\alpha^{L}>0
$$

$P\left(\sum_{j=1}^{L} X_{j} \leq t\right) \leq 1-\alpha^{L}<1$. Thus, for any $n \in \mathbb{N}$ $P\left(W_{n L} \leqslant t\right)=P\left(\sum_{j=1}^{n L} X_{j} \leqslant t\right) \leqslant\left(1-\alpha^{L}\right)^{n}$, from which we conclude (exercise) that $\sum_{k=1}^{\infty} P\left(W_{k} \leqslant t\right)=M(t)<\infty$

Example: Age replacement policies (PK, p. 363)
Setting:- component's lifetime has distribution function F

- component is replaced
(A) either when it fails,
(B) or after reaching age T (fixed) whichever occurs first
- replacements (A) and (B) have different costs: replacement of a failed component (A) is more expensive than the planned replacement (B)
Question: How does the long-run cost of replacement depend on the cost of $(A),(B)$ and age T ?
What is the optimal T that minimizes the long-run cost of replacement?

Example: Age replacement policies (PK, p. 363)
Notation: X_{i} - lifetime of i-th component, $F_{x_{i}}(t)=F(t)$
Y_{i} - times between failures

Here we have two renewal processes
(1) renewal process $N(t)$ generated by renewal times $\left(W_{i}\right)_{i=1}^{\infty}$
(2) renewal process $Q(t)$ generated by interrenewal times $\left(Y_{i}\right)_{i=1}^{\infty}$ $N(t)=\#$ replacements on $[0, t], Q(t)=\#$ failure replacements on $[0, t]$

Example: Age replacement policies (PK, P. 363)
Compute the distribution of the inter renewal times for $N(t)$

$$
\begin{aligned}
& W_{i}-W_{i-1}= \begin{cases}X_{i}, & \text { if } X_{i} \leq T \\
T, & \text { if } X_{i}>T\end{cases} \\
& F_{T}(x):=P\left(W_{i}-W_{i-1} \leq x\right)=\left\{\begin{array}{cc}
F(x), & x<T \\
1, & x \geq T
\end{array}\right.
\end{aligned}
$$

In particular,

$$
E\left(W_{i}-W_{i-1}\right)=\int_{0}^{T}(1-F(x)) d x=: \mu_{T} \leq \mu=E\left(X_{i}\right)
$$

Using the elementary renewal theorem for $N(t)$, the total number of replacements has a long-run rate $\frac{E(N(t))}{t} \simeq \frac{1}{\mu_{T}}$ for large t

Example: Age replacement policies (PK, p. 363)
Compute the distribution of the interrenewal times for $\theta(t)$.

$$
Y_{1}=\left\{\begin{array}{l}
X_{1} \text { if } X_{1} \leq T \\
T+X_{2} \text { if } X_{1}>T, X_{2} \leq T \\
\vdots \\
T_{n}+X_{n+1}, \text { if } X_{1}>T_{1} \ldots, X_{n}>T_{1} X_{n+1} \leq T
\end{array}\right.
$$

so $\quad Y_{1}=L \cdot T+Z$, where $P(L \geq n)=(1-F(T))^{n}, Z \in[0, T]$ and for $z \in[0, T]$

$$
\begin{aligned}
& P(Z \leq z)=P\left(X_{1} \leq z, X_{1} \notin T\right)+P\left(X_{2} \leq z, X_{1}>T_{1} X_{2} \leq T\right) \\
& +\cdots+P\left(X_{n+1} \leq z_{1} X_{1}>T, \cdots, X_{n}>T, X_{n+1} / \leq T\right)+\cdots \\
& =P\left(X_{1} \leq z\right)+P\left(X_{2} \leq z\right) P\left(X_{1}>T\right)+\cdots+P\left(X_{n+1} \leq z_{1} X_{1}>T_{1}, X_{n}\right) \\
& =P(z)\left(1+(1-F(T))+\cdots+(1-F(T))^{n}+\cdots=\frac{F(z)}{F(T)}\right.
\end{aligned}
$$

