MATH180C: Introduction to Stochastic Processes II

Lecture Aoo: math-old.ucsd.edu/~ynemish/teaching/180cA Lecture B00: math-old.ucsd edu/~ynemish/teaching/180c-

Today: Asymptotic behavior of renewal processes

Next: PK 7.5, Durrett 3.1, 3.3
Week 6:

- homework 5 (due Friday, May 6)
- regrades for Midterm 1 and HW4 active until May 7, 11PM

Joint distribution of age and excess life
From the definition of γ_{t} and δ_{t}

- Partition w.r.t. the values of $N(t)$

$$
=\sum_{k=0}^{\infty} P\left(W_{k} \leqslant t \cdot x, W_{k+1}>t+y\right)
$$

condition on the value of W_{k} (c.d.f. of W_{k} is $F^{* k}(t)$

$$
\begin{aligned}
& =\frac{P(k i>t+y)}{1-F(t+y)}+\sum_{k=1}^{\infty} \int_{0}^{\infty} P\left(w_{k} \leq t-x, w_{k+1}^{\prime \prime}>t+y \mid W_{k}=u\right) d F^{* k}(u) \\
& =1-F(t+y)+\sum_{k=1}^{\infty} \int_{0}^{t-x} P\left(u+X_{k+1}>t+y\right) d F^{* k}(u) \\
& =1-F(t+y)+\sum_{k=1}^{\infty} \int_{0}^{t-x}(1-F(t+y-u)) d F^{* k}(u)
\end{aligned}
$$

Limiting distribution of age and excess life
Assume that X_{i} are continuous. Then

$$
\begin{aligned}
P\left(\delta_{t} \geq x, \gamma_{t}>y\right) & =1-F(t+y)+\sum_{k=1}^{\infty} \int_{0}^{t-x}(1-F(t+y-u)) d F^{* k}(u) \\
& =1-F(t+y)+\int_{i-x}^{t-x}(1-F(t+y-u)) d \sum_{k=1}^{\infty} F^{* k}(u) \\
& =1-F(t+y)+\int_{0}^{M+x}(1-F(t+y-w)) m(u) d u \\
& =1-F(t+y)+\int_{y+t}(1-F(w)) m(t+y-w) d w
\end{aligned}
$$

Recall that $\varepsilon(s):=m(s)-\frac{1}{\mu} \rightarrow 0$ as $s \rightarrow \infty \quad\left(\mu=E\left(X_{1}\right)\right)$. Then

$$
\begin{gathered}
\lim _{t \rightarrow \infty} P\left(\delta_{t} \geqslant x, \gamma_{t}>y\right)=\lim _{t \rightarrow \infty}\left[1-F(t+y)+\int_{y+x}^{y+t}(1-F(w))\left\{\frac{1}{\mu}+\varepsilon(t+y-w)\right) d w\right] \\
=\int_{y+x}^{\infty}(1-F(w)) \frac{1}{\mu} d w+\lim _{t \rightarrow \infty} \int_{y+x}^{y+t}(1-F(w)) \sum_{0} \varepsilon(t+y-w) d \omega
\end{gathered}
$$

Joint/ limiting distribution of $\left(\gamma_{t}, \delta_{t}\right)$
Thu. Let $F(t)$ be the c.d.f. of the interrenewal times. Then
(a) $P\left(\gamma_{t}>y, \delta_{t} \geq x\right)=1-F(t+y)+\sum_{k=1}^{\infty} \int_{0}^{t-x}(1-F(t+y-u)) d F^{* k}(u)$

$$
=1-F(t+y)+\int_{0}^{t-x}(1-F(t+y-u)) d M(u)
$$

(b) if additionally the interrenewal times are continuous,

$$
\lim _{t \rightarrow \infty} P\left(\gamma_{t}>y, \delta_{t} \geq x\right)=\frac{1}{\mu} \int_{x+y}^{\infty}(1-F(w)) d \omega \quad(*)
$$

If we denote by $\left(\gamma_{\infty}, \delta_{\infty}\right)$ a pair of r.v.s with distribution (*) then γ_{∞} and δ_{∞} are continuous r.v.s with densities

$$
f_{\gamma_{\infty}}(x)=f_{\delta_{\infty}}(x)=\frac{1}{\mu}(1-F(x)) \quad\left\{\quad \frac{1}{E(X)} \int_{0}^{\infty} P(X>x) d x\right.
$$

Example
Renewal process (counting earthquakes in California) has interrenewal times uniformly distributed on $[0,1]$ (years).
(a) What is the long-run probability that an earthquake will hit California within 6 months?

$$
\lim _{t \rightarrow \infty} P\left(\gamma_{t} \leqslant \frac{1}{2}\right)=\int_{0}^{1 / 2} 2 \cdot(1-x) d x=1-\left.x^{2}\right|_{0} ^{1 / 2}=0.75
$$

(b) What is the long-run probability that it has been at most 6 months since the last earthquake?

$$
\lim _{t \rightarrow \infty} P\left(\delta_{t} \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 2 \cdot(1-x) d x=0.75
$$

