MATH 180C HOMEWORK 9. SOLUTIONS

SPRING 2022

1. Pinsky and Karlin, Exercise 8.2.3. Suppose that net inflows to a reservoir are described by a standard Brownian motion. If at time 0, the reservoir has x = 3.29 units of water, what is the probability that the reservoir never becomes empty in the first t = 4 units of time?

Solution. Let X_t denote the amount of water in the reservoir at time t. We have to compute

(1)
$$P(\min_{0 \le t \le 4} X_t > 0).$$

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion starting from 0 such that $X_t = 3.29 + B_t$. Then

(2)
$$P(\min_{0 \le t \le 4} X_t > 0) = P(\min_{0 \le t \le 4} (3.29 + B_t) > 0) = P(\min_{0 \le t \le 4} B_t > -3.29).$$

Using the reflection symmetry of the Brownian motion at zero (lecture 20, page 4),

(3)
$$P(\min_{0 \le t \le 4} B_t > -3.29) = P(\max_{0 \le t \le 4} B_t < 3.29)$$

Finally, we can compute the last quantity using the reflection principle (lecture 21, page 6)

(4)
$$P(\max_{0 \le t \le 4} B_t < 3.29) = P(|B_4| < 3.29) = P\left(|B_1| < \frac{3.29}{2}\right) \approx 0.9$$

2. Pinsky and Karlin, Exercise 8.2.5. Let τ_0 be the largest zero of a standard Brownian motion not exceeding a > 0. That is $\tau_0 = \max\{u \ge 0; B(u) = 0 \text{ and } u \le a\}$. Show that

(5)
$$P(\tau_0 < t) = \frac{2}{\pi} \arcsin \sqrt{t/a}.$$

Solution. Firstly, note that for any t < a

(6)
$$P(\tau_0 < t) = P(\forall u \in (t, a], B(u) \neq 0) = 1 - \theta(t, a),$$

where $\theta(t, a)$ is the probability that there exists a standard Brownian motion has zero on the interval (t, a] (see lecture 21, page 9). From the same lecture we know that

(7)
$$\theta(t,a) = \frac{2}{\pi} \arccos \sqrt{t/a}.$$

We conclude that

(8)
$$P(\tau_0 < t) = 1 - \theta(t, a) = \frac{2}{\pi} \left(\frac{\pi}{2} - \arccos \sqrt{t/a} \right) = \frac{2}{\pi} \arcsin \sqrt{t/a}.$$

3. *Pinsky and Karlin, Exericse 8.3.3.* The net inflow to a reservoir is well described by a Brownian motion. Because a reservoir cannot contain a negative amount of water, we

suppose that the water level R(t) at time t is a reflected Brownian motion. What is the probability that the reservoir contains more than 10 units of water at time t = 25? Assume that the reservoir has unlimited capacity and that R(0) = 5.

Solution. Let $(B_t)_{t\geq 0}$ be a standard Brownian motion such that R(t) is given by

(9)
$$R(t) = |5 + B_t|,$$

i.e., the amount of water is modeled by a Brownian motion starting from R(0) = 5 and reflected at zero (taking absolute value). Then

(10) $P(R(25) > 10) = P(5 + B_{25} < -10) + P(5 + B_{25} > 10)$

(11)
$$= P(B_{25} < -15) + P(B_{25} > 5)$$

(12)
$$= P(B_1 < -3) + P(B_1 > 1)$$

 $(13) \qquad \approx 0.16.$

4. Pinsky and Karlin, Exercise 8.4.2. A Brownian motion $(X_t)_{t\geq 0}$ has parameters $\mu = 0.1$ and $\sigma = 2$. Evaluate the probability of exiting the interval (a, b] at the point b starting from $X_0 = 0$ for b = 1, 10 and 100 and a = -b. Why do the probabilities change when a/b is the same in all cases?

Solution. Denote by $u_0^{(x)}$ the probability that the process X exits the interval (-x, x] at point x. Compute

(14)
$$\frac{2\mu}{\sigma^2} = \frac{2 \cdot 0.1}{4} = 0.05.$$

Using the formula for the gambler's ruin probability for the Brownian motion with drift (lecture 22-23, page 9), we have that

(15)
$$u_0^{(1)} = \frac{1 - e^{0.05}}{e^{-0.05} - e^{0.05}} \approx 0.51$$

Similarly,

(16)
$$u_0^{(10)} \approx 0.62, \quad u_0^{(100)} \approx 0.99.$$

Intuitive explanation: the larger is b, the longer it takes to reach either b or -b, the stronger is the influence of the drift.

5. Pinsky and Karlin, Exercise 8.4.3. A Brownian motion (X_t) has parameters $\mu = 0.1$ and $\sigma = 2$. Evaluate the mean time to exit the interval (a, b] from $X_0 = 0$ for b = 1, 10 and 100 and a = -b. Can you guess how this mean time varies with b for b large?

Solution. Denote by $T^{(x)}$ the mean time to exit the interval (-x, x). Similarly as in the previous problem, using the formula for the mean time in the gambler's ruin problem (lecture 22-23, page 9), we have that

(17)
$$T^{(1)} = \frac{1}{0.1} (u_0^{(1)} 2 - 1) \approx 0.25,$$

(18)
$$T^{(10)} \approx 24.5, \quad T^{(100)} \approx 986.$$

Intuitive explanation: the larger is the value b, the longer it takes to reach either b or -b, and thus the stronger is the role of the deterministic drift (linear in t) compared to the random fluctuations (of order \sqrt{t}). So for $b \gg 1$, the mean time behaves as $\frac{b}{\mu} = 10b$.