MATH 180C HOMEWORK 9. SOLUTIONS

SPRING 2022

1. Pinsky and Karlin, Exercise 8.2.3. Suppose that net inflows to a reservoir are described by a standard Brownian motion. If at time 0 , the reservoir has $x=3.29$ units of water, what is the probability that the reservoir never becomes empty in the first $t=4$ units of time?

Solution. Let X_{t} denote the amount of water in the reservoir at time t. We have to compute

$$
\begin{equation*}
P\left(\min _{0 \leq t \leq 4} X_{t}>0\right) . \tag{1}
\end{equation*}
$$

Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion starting from 0 such that $X_{t}=3.29+B_{t}$. Then

$$
\begin{equation*}
P\left(\min _{0 \leq t \leq 4} X_{t}>0\right)=P\left(\min _{0 \leq t \leq 4}\left(3.29+B_{t}\right)>0\right)=P\left(\min _{0 \leq t \leq 4} B_{t}>-3.29\right) . \tag{2}
\end{equation*}
$$

Using the reflection symmetry of the Brownian motion at zero (lecture 20, page 4),

$$
\begin{equation*}
P\left(\min _{0 \leq t \leq 4} B_{t}>-3.29\right)=P\left(\max _{0 \leq t \leq 4} B_{t}<3.29\right) . \tag{3}
\end{equation*}
$$

Finally, we can compute the last quantity using the reflection principle (lecture 21, page 6)

$$
\begin{equation*}
P\left(\max _{0 \leq t \leq 4} B_{t}<3.29\right)=P\left(\left|B_{4}\right|<3.29\right)=P\left(\left|B_{1}\right|<\frac{3.29}{2}\right) \approx 0.9 \tag{4}
\end{equation*}
$$

2. Pinsky and Karlin, Exercise 8.2.5. Let τ_{0} be the largest zero of a standard Brownian motion not exceeding $a>0$. That is $\tau_{0}=\max \{u \geq 0 ; B(u)=0$ and $u \leq a\}$. Show that

$$
\begin{equation*}
P\left(\tau_{0}<t\right)=\frac{2}{\pi} \arcsin \sqrt{t / a} \tag{5}
\end{equation*}
$$

Solution. Firstly, note that for any $t<a$

$$
\begin{equation*}
P\left(\tau_{0}<t\right)=P(\forall u \in(t, a], B(u) \neq 0)=1-\theta(t, a) \tag{6}
\end{equation*}
$$

where $\theta(t, a)$ is the probability that there exists a standard Brownian motion has zero on the interval $(t, a]$ (see lecture 21, page 9). From the same lecture we know that

$$
\begin{equation*}
\theta(t, a)=\frac{2}{\pi} \arccos \sqrt{t / a} \tag{7}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
P\left(\tau_{0}<t\right)=1-\theta(t, a)=\frac{2}{\pi}\left(\frac{\pi}{2}-\arccos \sqrt{t / a}\right)=\frac{2}{\pi} \arcsin \sqrt{t / a} \tag{8}
\end{equation*}
$$

3. Pinsky and Karlin, Exericse 8.3.3. The net inflow to a reservoir is well described by a Brownian motion. Because a reservoir cannot contain a negative amount of water, we
suppose that the water level $R(t)$ at time t is a reflected Brownian motion. What is the probability that the reservoir contains more than 10 units of water at time $t=25$? Assume that the reservoir has unlimited capacity and that $R(0)=5$.

Solution. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion such that $R(t)$ is given by

$$
\begin{equation*}
R(t)=\left|5+B_{t}\right|, \tag{9}
\end{equation*}
$$

i.e., the amount of water is modeled by a Brownian motion starting from $R(0)=5$ and reflected at zero (taking absolute value). Then

$$
\begin{align*}
P(R(25)>10) & =P\left(5+B_{25}<-10\right)+P\left(5+B_{25}>10\right) \tag{10}\\
& =P\left(B_{25}<-15\right)+P\left(B_{25}>5\right) \tag{11}\\
& =P\left(B_{1}<-3\right)+P\left(B_{1}>1\right) \tag{12}\\
& \approx 0.16 . \tag{13}
\end{align*}
$$

4. Pinsky and Karlin, Exercise 8.4.2. A Brownian motion $\left(X_{t}\right)_{t \geq 0}$ has parameters $\mu=0.1$ and $\sigma=2$. Evaluate the probability of exiting the interval $(a, b]$ at the point b starting from $X_{0}=0$ for $b=1,10$ and 100 and $a=-b$. Why do the probabilities change when a / b is the same in all cases?

Solution. Denote by $u_{0}^{(x)}$ the probability that the process X exits the interval $(-x, x]$ at point x. Compute

$$
\begin{equation*}
\frac{2 \mu}{\sigma^{2}}=\frac{2 \cdot 0.1}{4}=0.05 \tag{14}
\end{equation*}
$$

Using the formula for the gambler's ruin probability for the Brownian motion with drift (lecture 22-23, page 9), we have that

$$
\begin{equation*}
u_{0}^{(1)}=\frac{1-e^{0.05}}{e^{-0.05}-e^{0.05}} \approx 0.51 \tag{15}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
u_{0}^{(10)} \approx 0.62, \quad u_{0}^{(100)} \approx 0.99 \tag{16}
\end{equation*}
$$

Intuitive explanation: the larger is b, the longer it takes to reach either b or $-b$, the stronger is the influence of the drift.
5. Pinsky and Karlin, Exercise 8.4.3. A Brownian motion $\left(X_{t}\right)$ has parameters $\mu=0.1$ and $\sigma=2$. Evaluate the mean time to exit the interval $(a, b]$ from $X_{0}=0$ for $b=1,10$ and 100 and $a=-b$. Can you guess how this mean time varies with b for b large?

Solution. Denote by $T^{(x)}$ the mean time to exit the interval $(-x, x)$. Similarly as in the previous problem, using the formula for the mean time in the gambler's ruin problem (lecture 22-23, page 9), we have that

$$
\begin{align*}
& T^{(1)}=\frac{1}{0.1}\left(u_{0}^{(1)} 2-1\right) \approx 0.25 \tag{17}\\
& T^{(10)} \approx 24.5, \quad T^{(100)} \approx 986 \tag{18}
\end{align*}
$$

Intuitive explanation: the larger is the value b, the longer it takes to reach either b or $-b$, and thus the stronger is the role of the deterministic drift (linear in t) compared to the random fluctuations (of order \sqrt{t}). So for $b \gg 1$, the mean time behaves as $\frac{b}{\mu}=10 b$.

