MATH 180C HOMEWORK 3

SPRING 2022

Due date: Saturday $4 / 23 / 2022$ 11:59 PM (via Gradescope)
Note that there are Exercises and Problems in the textbook. Make sure you read the homework carefully to find the assigned question.

1. Pinsky and Karlin, Problem 6.3.3.

Let $\left(V_{t}\right)_{t \geq 0}$ be the two-state Markov chain whose transition probabilities are given by

$$
\begin{equation*}
\operatorname{Cov}\left(V_{s}, V_{t}\right)=\pi(1-\pi) e^{-\tau|t-s|} \tag{6}
\end{equation*}
$$

2. Pinsky and Karlin, Exercise 6.4.6.

A birth and death process has parameters $\lambda_{n}=\lambda$ and $\mu_{n}=n \mu$, for $n=0,1, \ldots$ Determine the stationary distribution.
3. Pinsky and Karlin, Problem 6.4.2.

Determine the stationary distribution, when it exists, for a birth and death process having constant parameters $\lambda_{n}=\lambda$ for $n=0,1, \ldots$ and $\mu_{n}=\mu$ for $n=1,2, \ldots$
4. Pinsky and Karlin, Problem 6.5.2.

Consider a birth and death process on the states $0,1, \ldots, 5$ with parameters

$$
\begin{array}{lll}
& \quad \lambda_{0}=\mu_{0}=\lambda_{5}=\mu_{5}=0 \\
\lambda_{1}=1, & \lambda_{2}=2, & \lambda_{3}=3,
\end{array} \quad \lambda_{4}=4,
$$

Note that 0 and 5 are absorbing states. Suppose the process begins in state $X_{0}=2$.
(a) What is the probability of eventual absorption in state 0 ?
(b) What is the mean time to absorption?
5. Pinsky and Karlin, Exercise 6.6.1.

A certain type component has two states: $0=\mathrm{OFF}$ and $1=$ OPERATING. In state 0 , the process remains there a random length of time, which is exponentially distributed with parameter α, and then moves to state 1 . The times in state 1 is exponentially distributed with parameter β, after which the process returns to 0 .

The system has two of these components, A and B , with distinct parameters:

Component Operating Failure Rate Repair Rate
 $A \quad \beta_{A} \quad \alpha_{A}$
 $B \quad \beta_{B} \quad \alpha_{B}$

In order for the system to operate, at least one of components A and B must be operating (a parallel system). Assume that the component stochastic processes are independent of one another. Determine the long run probability that the system is operating by
(a) Considering each component separately as a two-state Markov chain and using their statistical independence;
(b) Considering the system as a four-state Markov chain and solving the equation $\pi Q=0$.

