MATH 142A - INTRODUCTION TO ANALYSIS PRACTICE FINAL

WINTER 2022

1. Let $a, b, c \in \mathbb{R}$ be such that $a<b<c$ and $(c-a)(c-b)=(b-a)^{2}$. Show that

$$
\begin{equation*}
r:=\frac{c-a}{b-a} \tag{1}
\end{equation*}
$$

is not a rational number.
Hint: Show that r satisfies a polynomial equation with integer coefficients.
Solution. Since

$$
\begin{equation*}
r=\frac{c-a}{b-a}, \tag{2}
\end{equation*}
$$

we have that

$$
\begin{equation*}
c-a=r(b-a) \quad \text { and } \quad c-b=(c-a)-(b-a)=(r-1)(b-a) . \tag{3}
\end{equation*}
$$

Plugging the above expressions into the equation $(c-a)(c-b)=(b-a)^{2}$ we get

$$
\begin{equation*}
(b-a)^{2}(r-1) r=(b-a)^{2} . \tag{4}
\end{equation*}
$$

Since $b-a>0$, the above equation implies that r satisfies the equation

$$
\begin{equation*}
r^{2}-r-1=0 \tag{5}
\end{equation*}
$$

By Corollary 2.3, if r is a rational number, then $r \in\{-1,1\}$. Neither $r=1$ nor $r=-1$ satisfies Equation (5), therefore we conclude that r is not a rational number. (Number r is called the golden ratio)
2. Using only Definition 9.8 prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log _{10}\left(\log _{10} n\right)=+\infty \tag{6}
\end{equation*}
$$

Clearly indicate how you chose $N(M)$ for any $M>0$, and write explicitly $N(2), N(5)$, $N(10)$.

Solution. Fix $M>0$. Then for any $n>\left\lfloor 10^{10^{M}}\right\rfloor$

$$
\begin{equation*}
\log _{10}\left(\log _{10} n\right)>\log _{10}\left(\log _{10} 10^{10^{M}}\right)=M \tag{7}
\end{equation*}
$$

Therefore, by Definition 9.8

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \log _{10}\left(\log _{10} n\right)=+\infty \tag{8}
\end{equation*}
$$

with $N(M)=\left\lfloor 10^{10^{M}}\right\rfloor$. In particular, $N(2)=10^{100}, N(5)=10^{100000}, N(10)=10^{10^{1} 0}$. (This sequence converges to infinity very slowly)
3. Determine if the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}} \tag{9}
\end{equation*}
$$

converges. Justify your answer.
Solution. Denote

$$
\begin{equation*}
a_{n}:=\frac{2^{n} n!}{n^{n}} \tag{10}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{2^{n} n!}=\frac{2 n^{n}}{(n+1)^{n}}=\frac{2}{\left(1+\frac{1}{n}\right)^{n}} \tag{11}
\end{equation*}
$$

By the Important Example from Lecture 7,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \tag{12}
\end{equation*}
$$

By Theorem 9.6,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{2}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}=\frac{2}{e} . \tag{13}
\end{equation*}
$$

By the Important Example 16, $e>2$, so $2 / e<1$. By Theorem 14.8 (Ratio test) we conclude that the series $\sum a_{n}$ converges.
4. Let $a \in \mathbb{R}$ and let $f:[a,+\infty) \rightarrow \mathbb{R}$ be a function such that
(i) $f \in C([a,+\infty))$
(ii) $\lim _{x \rightarrow+\infty} f(x)=p \in \mathbb{R}$

Prove that f is uniformly continuous on $[a,+\infty)$.
Solution. Fix $\varepsilon>0$.
Since $\lim _{x \rightarrow+\infty} f(x)=p$, by the $\varepsilon-\delta$ definition of the limit (Lecture 18) there exists $M>a$ such that for any $x \in(M,+\infty)$

$$
\begin{equation*}
|f(x)-p|<\frac{\varepsilon}{2} \tag{14}
\end{equation*}
$$

Function f is continuous on $[a, M+1] \subset[a,+\infty)$, therefore by the Cantor-Heine Theorem (Theorem 19.2) f is uniformly continuous on $[a, M+1]$. By definition, this means that there exists $\delta>0$ such that for all $x, y \in[a, M+1]$

$$
\begin{equation*}
|f(x)-f(y)|<\frac{\varepsilon}{2} . \tag{15}
\end{equation*}
$$

Now for any $x, y \in[a,+\infty), x<y,|x-y|<\min \{\delta, 1\}$, we have

- if $y \leq M+1$, then by (15) $|f(x)-f(y)|<\varepsilon$.
- if $y>M+1$, then $x>M$ and by (14) and the triangle inequality

$$
\begin{equation*}
|f(x)-f(y)| \leq|f(x)-p|+|f(y)-p|<\varepsilon . \tag{16}
\end{equation*}
$$

We conclude that $x, y \in[a,+\infty)$ and $|x-y|<\min \{\delta, 1\}$ implies $|f(x)-f(y)|<\varepsilon$. By Definition (Lecture 15) this means that f is uniformly continuous on $[a,+\infty)$.
5. Compute the derivative of the function $f:(0,+\infty) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
f(x)=x+x^{x} \tag{17}
\end{equation*}
$$

Provide all intermediate steps.
Solution. First, compute the derivative on x^{x}. For this, rewrite this function as

$$
\begin{equation*}
x^{x}=e^{\log x^{x}}=e^{x \log x} \tag{18}
\end{equation*}
$$

Function $x \log x$ is differentiable on $(0,+\infty)$, function e^{x} is differentiable on \mathbb{R}, therefore by Theorem 28.4 (about the derivative of a composition)

$$
\begin{equation*}
\left(x^{x}\right)^{\prime}=\left(e^{x \log x}\right)^{\prime}=e^{x \log x}(x \log x)^{\prime}=e^{x \log x}(\log x+1)=x^{x}(\log x+1) . \tag{19}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f^{\prime}(x)=1+x^{x}(\log x+1) . \tag{20}
\end{equation*}
$$

6. Prove that the inequality

$$
\begin{equation*}
p y^{p-1}(x-y) \leq x^{p}-y^{p} \leq p x^{p-1}(x-y) \tag{21}
\end{equation*}
$$

holds for $0<y<x$ and $p>1$.
Solution. Consider function $f(x)=x^{p}$. Then for any interval $[y, x] \subset(0,+\infty), f$ is continuous on $[y, x]$ and differentiable on (y, x). Therefore, we can apply Lagrange's Mean Value Theorem (Theorem 29.3), which gives that there exists a number $\xi \in(y, x)$ such that

$$
\begin{equation*}
x^{p}-y^{p}=p \xi^{p-1}(x-y) \tag{22}
\end{equation*}
$$

Since $p>1, p-1>0$, and $y<\xi<x$, we have that

$$
\begin{equation*}
y^{p-1} \leq \xi^{p-1} \leq x^{p-1} \tag{23}
\end{equation*}
$$

Together with (22) this implies that

$$
\begin{equation*}
p y^{p-1}(x-y) \leq x^{p}-y^{p} \leq p x^{p-1}(x-y) . \tag{24}
\end{equation*}
$$

7. Let

$$
\begin{equation*}
f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad f(x)=\log (\cos x) \tag{25}
\end{equation*}
$$

Find a polynomial $P(x)$ such that

$$
\begin{equation*}
f(x)-P(x)=o\left(x^{3}\right) \quad \text { as } \quad x \rightarrow 0 . \tag{26}
\end{equation*}
$$

Solution By the local Taylor's formula with the remainder in Peano's form, $P(x)$ is equal to the Taylor's polynomial of degree 3 at 0 . In order to determine the coefficients of $P(x)$, compute the derivatives of f

$$
\begin{align*}
f^{\prime}(x) & =(\log (\cos x))^{\prime}=\frac{1}{\cos x} \cdot(-\sin x)=-\frac{\sin x}{\cos x} \tag{27}\\
f^{\prime \prime}(x) & =\left(-\frac{\sin x}{\cos x}\right)^{\prime}=-\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=-\frac{1}{\cos ^{2} x} \tag{28}\\
f^{(3)}(x) & =\left(-\frac{1}{\cos ^{2} x}\right)^{\prime}=-2 \frac{\sin x}{\cos ^{3} x} \tag{29}
\end{align*}
$$

Now

$$
\begin{equation*}
f(0)=\log 1=0, \quad f^{\prime}(0)=\tan 0=0, \quad f^{\prime \prime}(0)=-1, \quad f^{(3)}(0)=0 . \tag{30}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
f(x)=-\frac{x^{2}}{2}+o\left(x^{3}\right) \quad \text { as } \quad x \rightarrow 0 \tag{31}
\end{equation*}
$$

