Write your name and PID on the top of EVERY PAGE.

Write the solutions to each problem on separate pages. CLEARLY INDICATE on the top of each page the number of the corresponding problem. Different parts of the same problem can be written on the same page (for example, part (a) and part (b))
\square Remember this exam is graded by a human being. Write your solutions NEATLY AND COHERENTLY, or they risk not receiving full credit.

From the moment you access the midterm problems on Gradescope you have 70 MINUTES to COMPLETE AND UPLOAD your exam to Gradescope. Plan your time accordingly.
\square All steps of the proofs should be INCLUDED in your solutions. Provide references to the theorem/examples from the lectures/textbook used in your proofs.

> | \square You are allowed to use the textbook, lecture notes and your |
| :--- |
| personal notes. You are not allowed to use the electronic devices |
| (except for accessing the online version of the textbook) or outside |
| assistance. Outside assistance includes but is not limited to other |
| people, the internet and unauthorized notes. | $\begin{aligned} & \text { This exam is property of the regents of the university of Cal } \\ & \text { ifornia and not meant for outside distribution. If you see this } \\ & \text { exam appearing elsewhere, please NOTIFY the instructor at yne- } \\ & \text { mish@ucsd.edu and the UCSD Office of Academic Integrity at } \\ & \text { aio@ucsd.edu. }\end{aligned}$

1. (25 points) Let $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ be three sequences of real numbers satisfying

$$
a_{n} \leq b_{n} \leq c_{n}
$$

for all $n \in \mathbb{N}$. Suppose that $\lim a_{n}=a, \lim c_{n}=c$, where a and c are two real numbers, $a<c$.
Let S denote the set of the subsequential limits of $\left(b_{n}\right)$. Prove that $S \subset[a, c]$.
2. (25 points) Let $\left(x_{n}\right)$ be a sequence of real numbers given by

$$
x_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)^{n}+\sin \frac{\pi n}{2}
$$

for $n \in \mathbb{N}$. Determine the set of the subsequential limits of $\left(x_{n}\right), \lim \sup x_{n}$ and $\lim \inf x_{n}$.
3. (25 points) Determine if the series

$$
\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}
$$

converges.
4. (25 points) Prove that the function $f(x)=7^{x}$ is not uniformly continuous on \mathbb{R}.

