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� Write your name and PID on the top of EVERY PAGE.

� Write the solutions to each problem on separate pages.
CLEARLY INDICATE on the top of each page the number of
the corresponding problem. Different parts of the same problem
can be written on the same page (for example, part (a) and part
(b))

� Remember this exam is graded by a human being. Write your
solutions NEATLY AND COHERENTLY, or they risk not re-
ceiving full credit.

� From the moment you access the midterm problems on Grade-
scope you have 65 MINUTES to COMPLETE AND UPLOAD
your exam to Gradescope. Plan your time accordingly.

� All steps of the proofs should be INCLUDED in your solu-
tions. Provide references to the theorem/examples from the lec-
tures/texbook used in your proofs.

� You are allowed to use the textbook, lecture notes and your
personal notes. You are not allowed to use the electronic devices
(except for accessing the online version of the textbook) or outside
assistance. Outside assistance includes but is not limited to other
people, the internet and unauthorized notes.

This exam is property of the regents of the university of Cal-
ifornia and not meant for outside distribution. If you see this
exam appearing elsewhere, please NOTIFY the instructor at yne-
mish@ucsd.edu and the UCSD Office of Academic Integrity at
aio@ucsd.edu.
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1. (20 points) Numbers that are not algebraic are called transcendental.

Show that a square of a transcendent number is a transcendental number.

[Hint: Use proof by contradiction.]

Solution. Let b ∈ R, b is not algebraic.

Proof by contradiction. Suppose that b2 is algebraic. Then, by definition, b2 is a solution
to a certain polynomial equation with integer coefficients, i.e., there exist n ∈ N and
c0, c1, . . . , cn ∈ Z such that

cn(b2)n + cn−1(b
2)n−1 + · · ·+ c1(b

2) + c0 = 0. (1)

Then (1) is a polynomial equation for b with integer coefficients. For a formal proof,
define

c̃2k = ck, c̃2k+1 = 0, k ∈ {0, 1, . . . , n}, (2)

then
c̃2nb

2n + · · ·+ c̃1b
1 + c̃0 = 0. (3)

This means that b is algebraic, which contradicts to the initial assumption that b is
transcedental. We conclude that b2 is not algebraic.

2. (20 points) Prove that

lim
n→∞

2n

n2 + 1
= 0

using only the definition of convergence (i.e., without using any theorems from lec-
tures/textbook). Clearly indicate how you choose N(ε) for any ε > 0.

Solution. Fix ε > 0. Note that∣∣∣ 2n

n2 + 1
− 0
∣∣∣ =

2n

n2 + 1
<

2n

n2
=

2

n
(4)

and

n >
2

ε
⇔ 2

n
< ε, (5)

Take N(ε) :=
[
2
ε

]
. Then for any n > N(ε)∣∣∣ 2n

n2 + 1
− 0
∣∣∣ =

2n

n2 + 1
<

2n

n2
=

2

n
< ε, (6)

which by definition means that

lim
n→∞

2n

n2 + 1
= 0. (7)
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3. (20 points) Compute the limit

lim
n→∞

(n + 1)(n + 2)(n + 3)

n3 + n2 + 1
.

Clearly indicate all the statements from the lectures/textbook used to compute the limit.

Solution. First, pull out the leading terms in the numerator and the denominator

(n + 1)(n + 2)(n + 3)

n3 + n2 + 1
=

n3(1 + 1
n
)(1 + 2

n
)(1 + 3

n
)

n3(1 + 1
n

+ 1
n3 )

=
(1 + 1

n
)(1 + 2

n
)(1 + 3

n
)

1 + 1
n

+ 1
n3

. (8)

By the example from Lecture 4 (or Important Example 1 from Lecture 7) and Theo-
rem 9.2 (Lecture 5)

lim
n→∞

1

n
= lim

n→∞

2

n
= lim

n→∞

3

n
= lim

n→∞

1

n3
= 0. (9)

By Theorems 9.3, 9.4 (Lecture 5), limit of a sum is a sum of limit, limit of a product is
a product of limits, therefore

lim
n→∞

(
1 +

1

n

)(
1 +

2

n

)(
1 +

3

n

)
= (1 + 0)(1 + 0)(1 + 0) = 1, (10)

lim
n→∞

(
1 +

1

n
+

1

n3

)
= 1 + 0 + 0 = 1. (11)

By Theorem 9.6 (Lecture 5), limit of a fraction is a fraction of limits (note that the
denominator converges to 1 6= 0) therefore

lim
n→∞

(1 + 1
n
)(1 + 2

n
)(1 + 3

n
)

1 + 1
n

+ 1
n3

=
1

1
= 1. (12)

4. (20 points) Compute the limit

lim
n→∞

n
√

n + | sin(n)|.

Clearly indicate all the statements from the lectures/textbook used to compute the limit.

Solution. First, note that for any n ∈ N

0 ≤ | sin(n)| ≤ 1 ≤ n. (13)

Therefore for any n ∈ N

1 ≤ n
√
n + | sin(n)| ≤ n

√
n + n =

n
√

2n =
n
√

2 · n
√
n. (14)
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By the important examples 3 and 4 from Lecture 6, limn→∞
n
√

2 = 1, limn→∞
n
√
n = 1,

therefore, by Theorem 9.4,
lim
n→∞

n
√

2 · n
√
n = 1. (15)

Now (14) and (15) together with the queeze lemma imply that

lim
n→∞

n
√
n + | sin(n)| = 1. (16)

5. (20 points) Prove that the sequence (xn)∞n=1 with

xn = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!

converges.

Solution. Sequence (xn) is increasing: for any n ∈ N

xn+1 − xn =
1

(n + 1)!
> 0 ⇒ xn+1 > xn. (17)

Also, sequence (xn) is bounded: for any n ∈ N

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
≤ 1

20
+

1

21
+

1

22
+ · · ·+ 1

2n−1 =
1− (1

2
)n

1− 1
2

< 2, (18)

therefore, for any n ∈ N
xn < 3. (19)

Sequence (xn) is thus increasing and bounded above, therefore, by Theorem 10.2 (Lec-
ture 7) sequence (xn) converges.


