MATH 142A Introduction to Analysis - FINAL

Winter 2021
March 21, 2021

1 Final Tuesday 8 PM

1.1 Problem 1

1. (15 points) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences of real numbers such that the sequence $\left(a_{n}+b_{n}\right)$ is bounded and $\lim a_{n}=0$.
Prove that $\lim a_{n} b_{n}=0$.
Solution. Sequence $\left(a_{n}\right)$ converges, therefore by Theorem $9.1\left(a_{n}\right)$ is bounded, which means that there exists $M_{1}>0$ such that

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad\left(\left|a_{n}\right| \leq M_{1}\right) \tag{1.1}
\end{equation*}
$$

Since $\left(a_{n}+b_{n}\right)$ is bounded, there exists $M_{2}>0$ such that

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad\left(\left|a_{n}+b_{n}\right| \leq M_{2}\right) \tag{1.2}
\end{equation*}
$$

We conclude, using the triangle inequality, that for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left|b_{n}\right|=\left|a_{n}+b_{n}-a_{n}\right| \leq\left|a_{n}+b_{n}\right|+\left|a_{n}\right| \leq M_{1}+M_{2}, \tag{1.3}
\end{equation*}
$$

the sequence $\left(b_{n}\right)$ is bounded. Now we have that for all $n \in \mathbb{N}$

$$
\begin{equation*}
0 \leq\left|a_{n} b_{n}\right| \leq\left|a_{n}\right|\left(M_{1}+M_{2}\right) . \tag{1.4}
\end{equation*}
$$

Sequence $\left(a_{n}\right)$ converges to zero, so by Theorem 9.2

$$
\begin{equation*}
\lim \left|a_{n}\right|\left(M_{1}+M_{2}\right)=0 \tag{1.5}
\end{equation*}
$$

and (1.4), (1.5) and the Squeeze Lemma (20.14) yield

$$
\begin{equation*}
\lim a_{n} b_{n}=0 \tag{1.6}
\end{equation*}
$$

1.2 Problem 2

2. (15 points) Let $\left(a_{n}\right)$ be a Cauchy sequence. Prove that the sequence $\sqrt{a_{n}}$ is also a Cauchy sequence.

Solution. We may assume that $a_{n} \geq 0$ to make sure that $\sqrt{a_{n}}$ is well defined.
Solution 1. Fix $\varepsilon>0$. By Theorem 10.11, $\left(a_{n}\right)$ converges. Denote by $a \geq 0$ the limit of $\left(a_{n}\right)$, $\lim a_{n}=a$.

- Case 1: If $a=0$, then there exists $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
n>N \quad \Rightarrow \quad a_{n}<\frac{\varepsilon^{2}}{4} \tag{1.7}
\end{equation*}
$$

so for any $m, n>N$

$$
\begin{equation*}
\left|\sqrt{a_{n}}-\sqrt{a_{m}}\right| \leq \sqrt{a_{n}}+\sqrt{a_{m}}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \tag{1.8}
\end{equation*}
$$

- Case 2: If $a>0$, then by Theorem 9.11 there exists $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
n>N_{1} \quad \Rightarrow \quad a_{n}>\frac{a}{4} \tag{1.9}
\end{equation*}
$$

$\left(a_{n}\right)$ is a Cauchy sequence, therefore there exists N_{2} such that

$$
\begin{equation*}
n, m>N_{2} \quad \Rightarrow \quad\left|a_{n}-a_{m}\right|<\sqrt{a} \varepsilon \tag{1.10}
\end{equation*}
$$

Then for any $m, n>N:=\max \left\{N_{1}, N_{2}\right\}$

$$
\begin{equation*}
\left|\sqrt{a_{n}}-\sqrt{a_{m}}\right|=\frac{\left|a_{n}-a_{m}\right|}{\sqrt{a_{m}}+\sqrt{a_{m}}} \leq \frac{\left|a_{n}-a_{m}\right|}{\sqrt{a}}<\varepsilon \tag{1.11}
\end{equation*}
$$

It follows from (1.8) and (1.11) that there exists $N \in \mathbb{N}$ such that for all $m, n>N$

$$
\begin{equation*}
\left|\sqrt{a_{n}}-\sqrt{a_{m}}\right|<\varepsilon \tag{1.12}
\end{equation*}
$$

$\left(\sqrt{a_{n}}\right)$ is a Cauchy sequence.
Solution 2. Sequence $\left(a_{n}\right)$ is a Cauchy sequence, so by Theorem $10.10\left(a_{n}\right)$ is bounded, and there exists $M>0$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n} \leq M \tag{1.13}
\end{equation*}
$$

We proved in Lecture 13 that the function $f(x)=\sqrt{x}$ is continuous on $[0,+\infty)$. By Theorem 19.2 (Cantor-Heine Theorem), $f(x)$ is uniformly continuous on $[0, M]$.

Sequence $\left(a_{n}\right)$ is a Cauchy sequence in $[0, M]$, and f is uniformly continuous on $[0, M]$, therefore by Theorem 19.4 the sequence $\left(f\left(a_{n}\right)\right)=\left(\sqrt{a_{n}}\right)$ is a Cauchy sequence.
Solution 3. Notice that for any $x, y \in[0,+\infty), x<y$ we have

$$
\begin{equation*}
y \leq y-x+2 \sqrt{y-x} \sqrt{x}+\sqrt{x}=(\sqrt{y-x}+\sqrt{x})^{2} \tag{1.14}
\end{equation*}
$$

so by taking the square root on both sides of the inequality we get

$$
\begin{equation*}
\sqrt{y} \leq \sqrt{y-x}+\sqrt{x} \Rightarrow \sqrt{y}-\sqrt{x} \leq \sqrt{y-x} \tag{1.15}
\end{equation*}
$$

Fix $\varepsilon>0$. Since $\left(a_{n}\right)$ is a Cauchy sequence, there exists $N \in \mathbb{N}$ such that for all $m, n>N$

$$
\begin{equation*}
\left|a_{n}-a_{m}\right|<\varepsilon^{2} . \tag{1.16}
\end{equation*}
$$

Then for all $m, n>N$

$$
\begin{equation*}
\left|\sqrt{a_{n}}-\sqrt{a_{m}}\right| \leq \sqrt{\left|a_{n}-a_{m}\right|}<\varepsilon \tag{1.17}
\end{equation*}
$$

where we used 1.15 in the first inequality.

1.3 Problem 3

3. (15 points) Determine if the following series converges

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{3}\left(\sqrt{2}+(-1)^{n}\right)^{n}}{3^{n}} \tag{1.18}
\end{equation*}
$$

Justify your answer.
Solution. Use the root test

$$
\begin{equation*}
\lim \sup \sqrt[n]{\frac{n^{3}\left(\sqrt{2}+(-1)^{n}\right)^{n}}{3^{n}}}=\lim \sup \frac{\sqrt[n]{n^{3}}\left(\sqrt{2}+(-1)^{n}\right)}{3}=\frac{\sqrt{2}+1}{3}<1 \tag{1.19}
\end{equation*}
$$

where we used that $\sqrt{2}<2$ and

$$
\begin{equation*}
\lim \sqrt[n]{n^{3}}=1 \tag{1.20}
\end{equation*}
$$

by the Important Example 3.
It follows from the root test (Theorem 14.9) that the series (1.18) is absolutely convergent.

1.4 Problem 4

4. (15 points) Let function $f:(a, b) \rightarrow \mathbb{R}$ be such that
(i) f is bounded on (a, b);
(ii) f is continuous on (a, b);
(iii) f is monotonic on (a, b).

Prove that f is uniformly continuous on (a, b).
(Hint. You can use Theorem 19.5.)
Solution. Consider the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ with

$$
\begin{equation*}
a_{n}=a+\frac{1}{n}, \quad b_{n}=b-\frac{1}{n} \tag{1.21}
\end{equation*}
$$

Then the sequences $\left(f\left(a_{n}\right)\right)$ and $\left(f\left(b_{n}\right)\right)$ are monotonic and bounded, therefore by Theorem 10.2 $\left(f\left(a_{n}\right)\right)$ and $\left(f\left(b_{n}\right)\right)$ converge. Denote

$$
\begin{equation*}
A:=\lim f\left(a_{n}\right), \quad B:=\lim f\left(b_{n}\right), \tag{1.22}
\end{equation*}
$$

and let

$$
\tilde{f}:[a, b] \rightarrow \mathbb{R}, \quad \tilde{f}(x)= \begin{cases}f(x), & x \in(a, b) \tag{1.23}\\ A, & x=a \\ B, & x=b\end{cases}
$$

By Theorem 19.5 it is enough to show that \tilde{f} is continuous on $[a, b]$.

Suppose that f is increasing. Fix $\varepsilon>0$. Then

$$
\begin{equation*}
\lim f\left(a_{n}\right)=A \quad \Rightarrow \quad \exists N_{1}(\varepsilon) \in \mathbb{N} \quad\left(n>N_{1}(\varepsilon) \Rightarrow f\left(a_{n}\right)-A<\varepsilon\right) \tag{1.24}
\end{equation*}
$$

Then for any $x \in\left(a, a+\frac{1}{N_{1}(\varepsilon)+1}\right)$ by monotonicity

$$
\begin{equation*}
f(x)-A \leq f\left(a_{N_{1}(\varepsilon)+1}\right)-A<\varepsilon, \tag{1.25}
\end{equation*}
$$

and thus $\lim _{x \rightarrow a^{+}} \tilde{f}(x)=A, \tilde{f}$ is continuous at a.
Similarly,

$$
\begin{equation*}
\lim f\left(b_{n}\right)=b \quad \Rightarrow \quad \exists N_{2}(\varepsilon) \in \mathbb{N} \quad\left(n>N_{2}(\varepsilon) \Rightarrow B-f\left(b_{n}\right)<\varepsilon\right) \tag{1.26}
\end{equation*}
$$

and for any $x \in\left(b-\frac{1}{N_{2}(\varepsilon)+1}, b\right)$ by monotonicity

$$
\begin{equation*}
B-f(x) \leq B-f\left(b_{N_{2}(\varepsilon)+1}\right)<\varepsilon \tag{1.27}
\end{equation*}
$$

We conclude that \tilde{f} is continuous on $[a, b]$.
If f is decreasing on (a, b), the proof follows from the same argument by switching the roles of $A,\left(a_{n}\right)$ and $B,\left(b_{n}\right)$ in (1.25) - 1.26 .

1.5 Problem 5

5. (15 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} and satisfy

$$
\begin{equation*}
f^{\prime}(x)=\lambda f(x) \tag{1.28}
\end{equation*}
$$

for some $\lambda>0$.
Prove that $f(x)=C e^{\lambda x}$ for some $C \in \mathbb{R}$.
(Hint. Consider function $g(x)=f(x) e^{-\lambda x}$ and its derivative.)
Solution. Consider $g(x)=f(x) e^{-\lambda x}$. Then using the product rule and 1.28) we get

$$
\begin{equation*}
g^{\prime}(x)=f^{\prime}(x) e^{-\lambda x}-f(x) \lambda e^{-\lambda x}=\lambda f(x) e^{-\lambda x}-f(x) \lambda e^{-\lambda x}=0 . \tag{1.29}
\end{equation*}
$$

Therefore, $g \in D(\mathbb{R})$ and $g^{\prime}(x)=0$ for all $x \in \mathbb{R}$. By Corollary 29.4, there exists $C \in \mathbb{R}$ such that

$$
\begin{equation*}
g(x)=f(x) e^{-\lambda x}=C \tag{1.30}
\end{equation*}
$$

We conclude that $f(x)=C e^{\lambda x}$.

1.6 Problem 6

6. (15 points) Compute the limit

$$
\begin{equation*}
\lim _{x \rightarrow 1} x^{\frac{1}{1-x}} \tag{1.31}
\end{equation*}
$$

Solution. First, write

$$
\begin{equation*}
x^{\frac{1}{1-x}}=e^{\log x^{\frac{1}{1-x}}}=e^{\frac{1}{1-x} \log x} . \tag{1.32}
\end{equation*}
$$

By the L'Hôpital's rule,

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{\log x}{1-x}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{-1}=-1 \tag{1.33}
\end{equation*}
$$

Therefore, by the continuity of $x \mapsto e^{x}$, we get that

$$
\begin{equation*}
\lim _{x \rightarrow 1} e^{\frac{\log x}{1-x}}=e^{\lim _{x \rightarrow 1} \frac{\log x}{1-x}}=e^{-1} \tag{1.34}
\end{equation*}
$$

1.7 Problem 7

7. (15 points) Let

$$
\begin{equation*}
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=e^{2 x-x^{2}} \tag{1.35}
\end{equation*}
$$

Find a polynomial $P(x)$ such that

$$
\begin{equation*}
f(x)-P(x)=o\left(x^{3}\right) \quad \text { as } \quad x \rightarrow 0 \tag{1.36}
\end{equation*}
$$

Solution. Compute the derivatives of f

$$
\begin{align*}
f^{\prime}(x) & =e^{2 x-x^{2}}(2-2 x) \tag{1.37}\\
f^{\prime \prime}(x) & =e^{2 x-x^{2}}(2-2 x)^{2}-2 e^{2 x-x^{2}}=e^{2 x-x^{2}}\left((2-2 x)^{2}-2\right) \tag{1.38}\\
f^{\prime \prime \prime}(x) & =e^{2 x-x^{2}}\left((2-2 x)^{2}-2\right)(2-2 x)+e^{2 x-x^{2}}(-4(2-2 x)) \tag{1.39}
\end{align*}
$$

We see that $f \in D^{(3)}(\mathbb{R})$. By applying the local Taylor's theorem with the remainder in Peano's form we have

$$
\begin{equation*}
f(x)-\left(f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}\right)=o\left(x^{3}\right) \quad \text { as } \quad x \rightarrow 0 \tag{1.40}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
P(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}=1+2 x+\frac{2}{2} x^{2}-\frac{4}{6} x^{3}=1+2 x+x^{2}-\frac{2}{3} x^{3} \tag{1.41}
\end{equation*}
$$

2 Final Wednesday 3 PM

2.1 Problem 1

8. (15 points) Using only the definition of the limit of a sequence, prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2 n+3}{4 n+5}=\frac{1}{2} \tag{2.1}
\end{equation*}
$$

Solution. Fix $\varepsilon>0$. For any $n \in \mathbb{N}$ we have that

$$
\begin{equation*}
\left|\frac{2 n+3}{4 n+5}-\frac{1}{2}\right|=\left|\frac{4 n+6-(4 n+5)}{2(4 n+5)}\right|=\frac{1}{8 n+10}<\frac{1}{8 n} \tag{2.2}
\end{equation*}
$$

Therefore, for any $n>\left[\frac{1}{8 \varepsilon}\right]$ we get

$$
\begin{equation*}
\left|\frac{2 n+3}{4 n+5}-\frac{1}{2}\right|<\frac{1}{8 n}<\frac{8 \varepsilon}{8}=\varepsilon \tag{2.3}
\end{equation*}
$$

By Definition $7.1 \lim _{n \rightarrow \infty} \frac{2 n+3}{4 n+5}=\frac{1}{2}$.
9. (15 points) Using only the definition of the limit of a sequence, prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{5 n+6}{n+1}=5 \tag{2.4}
\end{equation*}
$$

Solution. Fix $\varepsilon>0$. For any $n \in \mathbb{N}$ we have that

$$
\begin{equation*}
\left|\frac{5 n+6}{n+1}-5\right|=\left|\frac{5 n+6-5(n+1)}{n+1}\right|=\frac{1}{n+1}<\frac{1}{n} \tag{2.5}
\end{equation*}
$$

Therefore, for any $n>\left[\frac{1}{\varepsilon}\right]$ we get

$$
\begin{equation*}
\left|\frac{5 n+6}{n+1}-5\right|<\frac{1}{n}<\frac{1}{\frac{1}{\varepsilon}}=\varepsilon . \tag{2.6}
\end{equation*}
$$

By Definition $7.1 \lim _{n \rightarrow \infty} \frac{5 n+6}{n+1}=5$.

2.2 Problem 2

10. (15 points) Prove that the sequence $\left(a_{n}\right)$ given by

$$
\begin{equation*}
a_{1}=\frac{1}{4}, \quad a_{n+1}=\sqrt{a_{n}} \tag{2.7}
\end{equation*}
$$

is bounded and monotonic. Compute $\lim a_{n}$.

Solution. First we show that $\left(a_{n}\right)$ is bounded. Indeed, $a_{1}<1$, and for any $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n}<1 \Rightarrow a_{n+1}=\sqrt{a_{n}}<1 \tag{2.8}
\end{equation*}
$$

By the principle of mathematical induction, for all $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n}<1 \tag{2.9}
\end{equation*}
$$

Similarly, for all $n \in \mathbb{N}$ we have that $a_{n}>0$, and we conclude that $a_{n} \in(0,1)$ for all $n \in \mathbb{N}$. Next, for any $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n+1}-a_{n}=\sqrt{a_{n}}-a_{n}=\sqrt{a_{n}}\left(1-\sqrt{a_{n}}\right)>0 \tag{2.10}
\end{equation*}
$$

where we used that $a_{n} \in(0,1)$. We conclude that $\left(a_{n}\right)$ in increasing.
By Theorem 10.2, sequence $\left(a_{n}\right)$ converges. Denote $a:=\lim a_{n}$. We have that for any $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n+1}^{2}=a_{n} . \tag{2.11}
\end{equation*}
$$

If we take the limit on both sides of the equality (2.18), by Theorem 9.4 we get that

$$
\begin{equation*}
a^{2}=a \quad \Rightarrow \quad a \in\{0,1\} \tag{2.12}
\end{equation*}
$$

Since $\left(a_{n}\right)$ is increasing, $a_{n} \geq \frac{1}{4}$ for all $n \in \mathbb{N}$, and by the corollary to Theorem 9.11 and 2.19 we have that

$$
\begin{equation*}
a \geq \frac{1}{4} \quad \Rightarrow \quad a=1 \tag{2.13}
\end{equation*}
$$

Therefore, $\lim a_{n}=1$.
11. (15 points) Prove that the sequence $\left(a_{n}\right)$ given by

$$
\begin{equation*}
a_{1}=\frac{1}{3}, \quad a_{n+1}=\sqrt{a_{n}} \tag{2.14}
\end{equation*}
$$

is bounded and monotonic. Compute $\lim a_{n}$.
Solution. (The same argument as in the previous problem). First we show that $\left(a_{n}\right)$ is bounded. Indeed, $a_{1}<1$, and for any $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n}<1 \Rightarrow a_{n+1}=\sqrt{a_{n}}<1 \tag{2.15}
\end{equation*}
$$

By the principle of mathematical induction, for all $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n}<1 \tag{2.16}
\end{equation*}
$$

Similarly, for all $n \in \mathbb{N}$ we have that $a_{n}>0$, and we conclude that $a_{n} \in(0,1)$ for all $n \in \mathbb{N}$. Next, for any $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n+1}-a_{n}=\sqrt{a_{n}}-a_{n}=\sqrt{a_{n}}\left(1-\sqrt{a_{n}}\right)>0 \tag{2.17}
\end{equation*}
$$

where we used that $a_{n} \in(0,1)$. We conclude that $\left(a_{n}\right)$ in increasing.
By Theorem 10.2, sequence $\left(a_{n}\right)$ converges. Denote $a:=\lim a_{n}$. We have that for any $n \in \mathbb{N}$

$$
\begin{equation*}
a_{n+1}^{2}=a_{n} . \tag{2.18}
\end{equation*}
$$

If we take the limit on both sides of the equality (2.18), by Theorem 9.4 we get that

$$
\begin{equation*}
a^{2}=a \quad \Rightarrow \quad a \in\{0,1\} \tag{2.19}
\end{equation*}
$$

Since $\left(a_{n}\right)$ is increasing, $a_{n} \geq \frac{1}{3}$ for all $n \in \mathbb{N}$, and by the corollary to Theorem 9.11 and 2.19 we have that

$$
\begin{equation*}
a \geq \frac{1}{3} \quad \Rightarrow \quad a=1 \tag{2.20}
\end{equation*}
$$

Therefore, $\lim a_{n}=1$.

2.3 Problem 3

12. (15 points) Determine if the following series converges

$$
\begin{equation*}
\sum_{n=1}^{\infty}(\sqrt{2}-\sqrt[3]{2})(\sqrt{2}-\sqrt[5]{2}) \cdots(\sqrt{2}-\sqrt[2 n+1]{2}) \tag{2.21}
\end{equation*}
$$

Justify your answer.
Solution. Use the ratio test. Denote the n-th term of the series by a_{n}

$$
\begin{equation*}
a_{n}:=(\sqrt{2}-\sqrt[3]{2})(\sqrt{2}-\sqrt[5]{2}) \cdots(\sqrt{2}-\sqrt[2 n+1]{2}) \tag{2.22}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim \frac{a_{n+1}}{a_{n}}=\lim (\sqrt{2}-\sqrt[2 n+3]{2})=\sqrt{2}-1 \tag{2.23}
\end{equation*}
$$

where we used that $\lim \sqrt[n]{2}=1$ (Important Example 4), and that any subsequence of a convergent sequence converges to the same limit (Theorem 11.3).
Since $\sqrt{2}<2$, we have that

$$
\begin{equation*}
\lim \frac{a_{n+1}}{a_{n}}<1 \tag{2.24}
\end{equation*}
$$

and thus by the ration test (Theorem 14.8) the series (2.21) converges.

2.4 Problem 4

13. (15 points) Consider the function

$$
\begin{equation*}
f(x)=\frac{\log (1-3 x)}{x} \tag{2.25}
\end{equation*}
$$

Note that function f is not defined at $x=0$.
Construct a continuous extension of f defined at $x=0$ (show that it is indeed continuous at $x=0$).

Solution. Function $x \mapsto \log (1-3 x)$ is defined and continuous on the interval $\left(-\infty, \frac{1}{3}\right)$, and function $x \mapsto \frac{1}{x}$ is defined and continuous on $\mathbb{R} \backslash\{0\}$. Therefore, the domain of definition of f is $(-\infty, 1 / 3) \backslash\{0\}$.
In order to construct an extension of f continuous at $x=0$ we introduce the function

$$
\tilde{f}:\left(-\infty, \frac{1}{3}\right) \rightarrow \mathbb{R}, \quad \tilde{f}(x)= \begin{cases}f(x), & x \neq 0 \tag{2.26}\\ c, & x=0\end{cases}
$$

\tilde{f} is continuous on $(-\infty, 1 / 3) \backslash\{0\}$, and we have to determine the value c for which \tilde{f} is continuous at zero.
By definition, \tilde{f} is continuous at $x=0$ if

$$
\begin{equation*}
\lim _{x \rightarrow 0} \tilde{f}(x)=\tilde{f}(0)=c \tag{2.27}
\end{equation*}
$$

By using the Important Example 13 and Theorem 20.5 (about the limit of a composition of functions) (one can also use the L'Hôpital's rule) we find c

$$
\begin{equation*}
\lim _{x \rightarrow 0} \tilde{f}(x)=\lim _{x \rightarrow 0} \frac{\log (1-3 x)}{x}=-3 \lim _{x \rightarrow 0} \frac{\log (1-3 x)}{-3 x}=-3 \cdot 1=-3 . \tag{2.28}
\end{equation*}
$$

The continuous extension of f is given by (2.26) with $c=-3$.
14. (15 points) Consider the function

$$
\begin{equation*}
f(x)=\frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1} \tag{2.29}
\end{equation*}
$$

Note that function f is not defined at $x=0$.
Construct a continuous extension of f defined at $x=0$ (show that it is indeed continuous at $x=0$).

Solution. Function f is defined and continuous on the interval $[-1,+\infty) \backslash\{0\}$.
In order to construct an extension of f continuous at $x=0$ we introduce the function

$$
\tilde{f}:[-1, \infty) \rightarrow \mathbb{R}, \quad \tilde{f}(x)= \begin{cases}f(x), & x \neq 0 \tag{2.30}\\ c, & x=0\end{cases}
$$

\tilde{f} is continuous on $[-1, \infty) \backslash\{0\}$, and we have to determine the value c for which \tilde{f} is continuous at zero.
By definition, \tilde{f} is continuous at $x=0$ if

$$
\begin{equation*}
\lim _{x \rightarrow 0} \tilde{f}(x)=\tilde{f}(0)=c \tag{2.31}
\end{equation*}
$$

We find c by computing the limit (one can also use the L'Hôpital's rule)

$$
\begin{equation*}
\lim _{x \rightarrow 0} \tilde{f}(x)=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}=\lim _{x \rightarrow 0} \frac{1+x-1}{\sqrt{1+x}+1} \cdot \frac{(\sqrt[3]{1+x})^{2}+\sqrt[3]{1+x}+1}{1+x-1}=\frac{3}{2} \tag{2.32}
\end{equation*}
$$

since

$$
\begin{equation*}
(\sqrt{1+x}-1)(\sqrt{1+x}+1)=1+x-1=x \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
(\sqrt[3]{1+x}-1)\left((\sqrt[3]{1+x})^{2}+\sqrt[3]{1+x}+1\right)=1+x-1=x \tag{2.34}
\end{equation*}
$$

The continuous extension of f is given by 2.30 with $c=3 / 2$.

2.5 Problem 5

15. (15 points) Let $f:(a, b) \rightarrow \mathbb{R}$ satisfy
(i) f is differentiable on (a, b)
(ii) f is unbounded on (a, b).

Prove that f^{\prime}, the derivative of f, is also unbounded on (a, b).
(Hint. You can use proof by contradiction.)
Solution. Suppose that f^{\prime} is bounded on (a, b). This means that there exists $M>0$ such that for all $x \in(a, b)$

$$
\begin{equation*}
\left|f^{\prime}(x)\right| \leq M \tag{2.35}
\end{equation*}
$$

Fix a point $x_{0} \in(a, b)$. Then for any $x \in(a, b), x>x_{0}$, we have that

$$
\begin{equation*}
f \in C\left(\left[x_{0}, x\right]\right), \quad f \in D\left(\left(x_{0}, x\right)\right) . \tag{2.36}
\end{equation*}
$$

It follows from the mean value theorem (Theorem 29.3) applied to the function f on the interval $\left[x_{0}, x\right]$ that there exists $c \in\left(x_{0}, x\right)$ for which

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)=f^{\prime}(c)\left(x-x_{0}\right) \tag{2.37}
\end{equation*}
$$

Therefore, by using (2.33) we get the following bound

$$
\begin{equation*}
|f(x)|=\left|f\left(x_{0}\right)+f^{\prime}(c)\left(x-x_{0}\right)\right| \leq\left|f\left(x_{0}\right)\right|+\left|f^{\prime}(c)\right|\left|x-x_{0}\right| \leq\left|f\left(x_{0}\right)\right|+M|b-a|, \tag{2.38}
\end{equation*}
$$

where we used that $c \in(a, b)$ and $\left|x-x_{0}\right|<|b-a|$.
Similarly, for any $x \in(a, b), x<x_{0}$, by applying the mean value theorem to f on $\left[x, x_{0}\right]$ we get

$$
\begin{equation*}
f\left(x_{0}\right)-f(x)=f^{\prime}(c)\left(x_{0}-x\right) \tag{2.39}
\end{equation*}
$$

which again leads to the bound

$$
\begin{equation*}
|f(x)| \leq\left|f\left(x_{0}\right)\right|+\left|f^{\prime}(c)\right|\left|x-x_{0}\right| \leq\left|f\left(x_{0}\right)\right|+M|b-a| . \tag{2.40}
\end{equation*}
$$

We conclude that if f^{\prime} is bounded on (a, b), then the function f is bounded on (a, b) by $\left|f\left(x_{0}\right)\right|+M|b-a|$, which contradicts to the assumption that f is unbounded on (a, b). The derivative f^{\prime} is thus unbounded on (a, b).

2.6 Problem 6

16. (15 points) Compute the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{x\left(e^{x}+1\right)-2\left(e^{x}-1\right)}{x^{3}} \tag{2.41}
\end{equation*}
$$

Solution. Both numerator and denominator tend to zero, so by applying the L'Hôpital's rule (twice) we get

$$
\begin{align*}
\lim _{x \rightarrow 0} \frac{x\left(e^{x}+1\right)-2\left(e^{x}-1\right)}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\left(e^{x}+1\right)+x e^{x}-2 e^{x}}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{1+x e^{x}-e^{x}}{3 x^{2}} \tag{2.42}\\
& =\lim _{x \rightarrow 0} \frac{e^{x}+x e^{x}-e^{x}}{6 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{6}=\frac{1}{6} . \tag{2.43}
\end{align*}
$$

17. (15 points) Compute the limit

$$
\begin{equation*}
\lim _{x \rightarrow 1}\left(\frac{1}{\log x}-\frac{1}{x-1}\right) \tag{2.44}
\end{equation*}
$$

Solution. First rewrite the above function as

$$
\begin{equation*}
\frac{1}{\log x}-\frac{1}{x-1}=\frac{x-1-\log x}{\log x(x-1)} \tag{2.45}
\end{equation*}
$$

We see that as x tends to 1 , both numerator and denominator tend to zero, so by applying the L'Hôpital's rule (twice) we get

$$
\begin{align*}
\lim _{x \rightarrow 1} \frac{x-1-\log x}{\log x(x-1)} & =\lim _{x \rightarrow 1} \frac{1-\frac{1}{x}}{\frac{1}{x}(x-1)+\log x} \tag{2.46}\\
& =\lim _{x \rightarrow 1} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}+\frac{1}{x}}=\frac{1}{2} \tag{2.47}
\end{align*}
$$

2.7 Problem 7

18. (15 points) Let

$$
\begin{equation*}
f:[-1,+\infty) \rightarrow \mathbb{R}, \quad f(x)=\sqrt{1+x} \tag{2.48}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left|f(x)-\left(1+\frac{x}{2}-\frac{x^{2}}{8}\right)\right| \leq \frac{1}{16} \tag{2.49}
\end{equation*}
$$

for $x \in[0,1]$.
(Hint. Use Taylor's formula with remainder in Lagrange's form.)

Solution. Compute the derivatives of f

$$
\begin{align*}
f^{\prime}(x) & =\frac{1}{2}(1+x)^{-1 / 2} \tag{2.50}\\
f^{\prime \prime}(x) & =-\frac{1}{4}(1+x)^{-3 / 2} \tag{2.51}\\
f^{(3)}(x) & =\frac{3}{8}(1+x)^{-5 / 2} \tag{2.52}
\end{align*}
$$

We see that $f(0)=1, f^{\prime}(0)=\frac{1}{2}, f^{\prime \prime}(0)=-\frac{1}{4}$, and thus

$$
\begin{equation*}
1+\frac{x}{2}-\frac{x^{2}}{8} \tag{2.53}
\end{equation*}
$$

coincides with the Taylor's polynomial of order 2 of f at $x=0$. Therefore, by the Taylor's theorem with the remainder in Lagrange's from (Corollary 31.3), for any $x \in(0,1]$ there exists a number ξ between 0 and x such that

$$
\begin{equation*}
f(x)-\left(1+\frac{x}{2}-\frac{x^{2}}{8}\right)=\frac{f^{(3)}(\xi)}{3!} x^{3} \tag{2.54}
\end{equation*}
$$

Plugging in the expression of $f^{(3)}$ computed earlier we get the following bound

$$
\begin{equation*}
\left|f(x)-\left(1+\frac{x}{2}-\frac{x^{2}}{8}\right)\right|=\frac{\frac{3}{8}(1+\xi)^{-5 / 2}}{3!} x^{3} \leq \frac{3}{8 \cdot 3!}=\frac{1}{16} \tag{2.55}
\end{equation*}
$$

where we used that for $x \in(0,1]$ and $\xi \in(0,1]$

$$
\begin{equation*}
x^{3} \leq 1, \quad \text { and } \quad \frac{1}{(1+\xi)^{5 / 2}} \leq 1 \tag{2.56}
\end{equation*}
$$

