MATH 142A Introduction to Analysis - FINAL

Winter 2021
March 16, 2021

1 Final Tuesday 8 PM

1.1 Problem 1

1. (15 points) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences of real numbers such that the sequence $\left(a_{n}+b_{n}\right)$ is bounded and $\lim a_{n}=0$.
Prove that $\lim a_{n} b_{n}=0$.

1.2 Problem 2

2. (15 points) Let $\left(a_{n}\right)$ be a Cauchy sequence. Prove that the sequence $\sqrt{a_{n}}$ is also a Cauchy sequence.

1.3 Problem 3

3. (15 points) Determine if the following series converges

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{3}\left(\sqrt{2}+(-1)^{n}\right)^{n}}{3^{n}} \tag{1.1}
\end{equation*}
$$

Justify your answer.

1.4 Problem 4

4. (15 points) Let function $f:(a, b) \rightarrow \mathbb{R}$ be such that
(i) f is bounded on (a, b);
(ii) f is continuous on (a, b);
(iii) f is monotonic on (a, b).

Prove that f is uniformly continuous on (a, b).
(Hint. You can use Theorem 19.5.)

1.5 Problem 5

5. (15 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} and satisfy

$$
\begin{equation*}
f^{\prime}(x)=\lambda f(x) \tag{1.2}
\end{equation*}
$$

for some $\lambda>0$.
Prove that $f(x)=C e^{\lambda x}$ for some $C \in \mathbb{R}$.
(Hint. Consider function $g(x)=f(x) e^{-\lambda x}$ and its derivative.)

1.6 Problem 6

6. (15 points) Compute the limit

$$
\begin{equation*}
\lim _{x \rightarrow 1} x^{\frac{1}{1-x}} \tag{1.3}
\end{equation*}
$$

1.7 Problem 7

7. (15 points) Let

$$
\begin{equation*}
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=e^{2 x-x^{2}} \tag{1.4}
\end{equation*}
$$

Find a polynomial $P(x)$ such that

$$
\begin{equation*}
f(x)-P(x)=o\left(x^{3}\right) \quad \text { as } \quad x \rightarrow 0 \tag{1.5}
\end{equation*}
$$

2 Final Wednesday 3 PM

2.1 Problem 1

8. (15 points) Using only the definition of the limit of a sequence, prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2 n+3}{4 n+5}=\frac{1}{2} \tag{2.1}
\end{equation*}
$$

9. (15 points) Using only the definition of the limit of a sequence, prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{5 n+6}{n+1}=5 \tag{2.2}
\end{equation*}
$$

2.2 Problem 2

10. (15 points) Prove that the sequence $\left(a_{n}\right)$ given by

$$
\begin{equation*}
a_{1}=\frac{1}{4}, \quad a_{n+1}=\sqrt{a_{n}} \tag{2.3}
\end{equation*}
$$

is bounded and monotonic. Compute $\lim a_{n}$.
11. (15 points) Prove that the sequence $\left(a_{n}\right)$ given by

$$
\begin{equation*}
a_{1}=\frac{1}{3}, \quad a_{n+1}=\sqrt{a_{n}} \tag{2.4}
\end{equation*}
$$

is bounded and monotonic. Compute $\lim a_{n}$.

2.3 Problem 3

12. (15 points) Determine if the following series converges

$$
\begin{equation*}
\sum_{n=1}^{\infty}(\sqrt{2}-\sqrt[3]{2})(\sqrt{2}-\sqrt[5]{2}) \cdots(\sqrt{2}-\sqrt[2 n+1]{2}) \tag{2.5}
\end{equation*}
$$

Justify your answer.

2.4 Problem 4

13. (15 points) Consider the function

$$
\begin{equation*}
f(x)=\frac{\log (1-3 x)}{x} \tag{2.6}
\end{equation*}
$$

Note that function f is not defined at $x=0$.
Construct a continuous extension of f defined at $x=0$ (show that it is indeed continuous at $x=0$).
14. (15 points) Consider the function

$$
\begin{equation*}
f(x)=\frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1} \tag{2.7}
\end{equation*}
$$

Note that function f is not defined at $x=0$.
Construct a continuous extension of f defined at $x=0$ (show that it is indeed continuous at $x=0$).

2.5 Problem 5

15. (15 points) Let $f:(a, b) \rightarrow \mathbb{R}$ satisfy
(i) f is differentiable on (a, b)
(ii) f is unbounded on (a, b).

Prove that f^{\prime}, the derivative of f, is also unbounded on (a, b).
(Hint. You can use proof by contradiction.)

2.6 Problem 6

16. (15 points) Compute the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{x\left(e^{x}+1\right)-2\left(e^{x}-1\right)}{x^{3}} . \tag{2.8}
\end{equation*}
$$

17. (15 points) Compute the limit

$$
\begin{equation*}
\lim _{x \rightarrow 1}\left(\frac{1}{\log x}-\frac{1}{x-1}\right) . \tag{2.9}
\end{equation*}
$$

2.7 Problem 7

18. (15 points) Let

$$
\begin{equation*}
f:[-1,+\infty) \rightarrow \mathbb{R}, \quad f(x)=\sqrt{1+x} \tag{2.10}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left|f(x)-\left(1+\frac{x}{2}-\frac{x^{2}}{8}\right)\right| \leq \frac{1}{16} \tag{2.11}
\end{equation*}
$$

for $x \in[0,1]$.
(Hint. Use Taylor's formula with remainder in Lagrange's form.)

