MATH 142A - INTRODUCTION TO ANALYSIS PRACTICE MIDTERM 2

WINTER 2022

Name (Last, First):
Student ID:

1. Let $\left(s_{n}\right)$ be a monotonic sequence and let $\left(s_{n_{k}}\right)$ be its subsequence. Prove that if the subsequence $\left(s_{n_{k}}\right)$ is a Cauchy sequence, then $\left(s_{n}\right)$ converges.

Solution.

Step 1: $\left(s_{n_{k}}\right)$ is bounded. The sequence $\left(s_{n_{k}}\right)$ is a Cauchy sequence. By Lemma $10.10\left(s_{n_{k}}\right)$ is bounded This means that there exists a number $M>0$ such that $\left|s_{n_{k}}\right| \leq M$ for all $k \in \mathbb{N}$.

Step 2: $\left(s_{n}\right)$ is bounded. By the definition of a subsequence, $k \leq n_{k}$ for any $k \in \mathbb{N}$. If $\left(s_{n}\right)$ is increasing, then for all $k \in \mathbb{N}$

$$
\begin{equation*}
k \leq n_{k} \Rightarrow s_{k} \leq s_{n_{k}} \leq M \tag{1}
\end{equation*}
$$

and thus $\left(s_{n}\right)$ is bounded above. If $\left(s_{n}\right)$ is decreasing, then for all $k \in \mathbb{N}$

$$
\begin{equation*}
k \leq n_{k} \Rightarrow s_{k} \geq s_{n_{k}} \geq-M, \tag{2}
\end{equation*}
$$

and thus $\left(s_{n}\right)$ is bounded below.
Step 3: $\left(s_{n}\right)$ converges. Sequence $\left(s_{n}\right)$ is monotonic and bounded, therefore by Theorem $10.2\left(s_{n}\right)$ converges.
2. Determine the set of the partial limits, liminf and limsup of the sequence $\left(x_{n}\right)$ given by

$$
\begin{equation*}
x_{n}=\frac{(-1)^{n}}{n}+\frac{1+(-1)^{n}}{2} \tag{3}
\end{equation*}
$$

Remark. Partial limit is another term used to describe the subsequential limit.
Solution. Denote

$$
\begin{equation*}
s_{n}=\frac{(-1)^{n}}{n}, \quad t_{n}=\frac{1+(-1)^{n}}{2} \tag{4}
\end{equation*}
$$

so that $x_{n}=s_{n}+t_{n}$. Denote by X and T the sets of the subsequential limits of the sequences $\left(x_{n}\right)$ and $\left(t_{n}\right)$ correspondingly.

Step 1: $X=T$. Sequence $\left(s_{n}\right)$ converges to 0 , therefore by Theorem 11.3, any subsequence of $\left(s_{n}\right)$ converges to 0 . If either the subsequence $\left(x_{n_{k}}\right)$ or the subsequence $\left(t_{n_{k}}\right)$ converges, then by Theorem 9.2

$$
\begin{equation*}
\lim x_{n_{k}}=\lim \left(t_{n_{k}}+s_{n_{k}}\right)=\lim \left(x_{n_{k}}-s_{n_{k}}\right)=\lim t_{n_{k}}, \tag{5}
\end{equation*}
$$

and thus $X=T$.
Step 2: $T=\{0,1\}$. We have that

$$
\begin{equation*}
t_{2 n-1}=0, \quad t_{2 n}=1 \tag{6}
\end{equation*}
$$

therefore $\{0,1\} \subset T$. If $t \notin\{0,1\}$, then

$$
\begin{equation*}
\forall n \in \mathbb{N} \quad\left|t_{n}-t\right| \geq \min \{|t|,|1-t|\}>0 \tag{7}
\end{equation*}
$$

so $t \notin T$.
We conclude that $X=T=\{0,1\}$.
Step 3: $\lim \inf x_{n}=0, \lim \sup x_{n}=1$. Follows from Theorem 11.8 (ii).
3. Determine if the following series converge
(a)

$$
\sum_{n=2}^{\infty} \frac{3}{\log n}
$$

(b)

$$
\sum_{n=2}^{\infty} \frac{3^{n}}{(\log n)^{n}}
$$

Solution.

(a) By the Important Example 6

$$
\begin{equation*}
\lim \frac{n}{e^{n}}=0 \tag{8}
\end{equation*}
$$

therefore there exists $N \in \mathbb{N}$ such that for any $n>N$

$$
\begin{equation*}
n<e^{n} . \tag{9}
\end{equation*}
$$

Function $x \mapsto \log x$ is increasing, so for any $n>N$

$$
\begin{equation*}
\log n<n \quad\left(\Leftrightarrow \quad \frac{1}{\log n}>\frac{1}{n}\right) . \tag{10}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum \frac{1}{n}=+\infty \tag{11}
\end{equation*}
$$

by the comparison test (Theorem 14.6 (ii)) we have that

$$
\begin{equation*}
\sum \frac{3}{\log n}=+\infty \tag{12}
\end{equation*}
$$

(b) In order to establish the convergence of the series, use the root test (Theorem 14.9)

$$
\begin{equation*}
\lim \sqrt[n]{\frac{3^{n}}{\log ^{n} n}}=\lim \frac{3}{\log n}=0 \tag{13}
\end{equation*}
$$

This implies that the series $\sum \frac{3^{n}}{\log ^{n} n}$ converges.
4. Prove that the function

$$
f(x)=2^{\frac{1}{1+x^{2}}}
$$

is continuous on \mathbb{R}.
Solution. Step 1: Function $x \mapsto \frac{1}{1+x^{2}}$ is continuous on \mathbb{R}. By Theorems 17.4, $g(x)=$ $1+x^{2}$ is continuous on \mathbb{R}. Since $g(x) \geq 1$ for all $x \in \mathbb{R}$, by Theorem $17.4,1 / g$ is continuous of \mathbb{R}.

Step 2: Function $x \mapsto 2^{x}$ is continuous on \mathbb{R}. As stated in Lecture 16 (and proven in the Important Example 11).

Step 3: f is continuous on \mathbb{R}. Follows from Steps 1, 2 and Theorem 17.5 about the continuity of a composition of continuous functions.
5. Let $S \subset \mathbb{R}$ and let $f: S \rightarrow \mathbb{R}$ and $g: S \rightarrow \mathbb{R}$ be uniformly continuous on S. Prove that $f+g$ is uniformly continuous on S.

Solution. Fix $\varepsilon>0$. From the definition of the uniform continuity, for any $\varepsilon>0$ there exist $\delta_{1}>0$ and $\delta_{2}>0$ such that

$$
\begin{align*}
& |x-y|<\delta_{1} \quad \Rightarrow \quad|f(x)-f(y)|<\frac{\varepsilon}{2} \tag{14}\\
& |x-y|<\delta_{2} \quad \Rightarrow \quad|g(x)-g(y)|<\frac{\varepsilon}{2} \tag{15}
\end{align*}
$$

Take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then for all $x, y \in \mathbb{R}$ such that $|x-y|<\delta$ by using the triangle inequality we have

$$
\begin{align*}
|f(x)+g(x)-(f(y)-g(y))| & =|f(x)-f(y)+g(x)-g(y)| \tag{16}\\
& \leq|f(x)-f(y)|+|g(x)-g(y)| \tag{17}\\
& <\varepsilon . \tag{18}
\end{align*}
$$

This means that

$$
\begin{equation*}
|x-y|<\delta \quad \Rightarrow \quad|(f+g)(x)-(f+g)(y)|<\varepsilon \tag{19}
\end{equation*}
$$

function $f+g$ is uniformly continuous on \mathbb{R}.

