MATH 142A - INTRODUCTION TO ANALYSIS PRACTICE MIDTERM 1

WINTER 2022

Name (Last, First): .		
, , ,		
Student ID:		

REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT.

2 WINTER 2022

1. Prove that for any $n \in \mathbb{N}$

$$(1) (2n)! < 2^{2n}(n!)^2.$$

Solution. We prove this statement using the principle of mathematical induction. Basis of induction, n = 1:

(2)
$$(2 \cdot 1)! = 2! = 2 < 2^{2 \cdot 1} (1!)^2 = 4.$$

Induction step. Suppose that

$$(3) (2n)! < 2^{2n}(n!)^2.$$

Note that for any $n \in \mathbb{N}$

$$(4) (2n+1)(2n+2) < (2(n+1))^2.$$

Therefore,

(5)
$$(2(n+1))! = (2n)!(2n+1)(2n+2) < 2^{2n}(n!)^2(2n+2)^2 = 2^{2(n+1)}((n+1)!)^2$$
.

By the principle of mathematical induction, for any $n \in \mathbb{N}$

(6)
$$(2n)! < 2^{2n}(n!)^2.$$

2. Prove that the set

(7)
$$S := \left\{ \frac{n}{n+3} (2 + (-1)^n) : n \in \mathbb{N} \right\}$$

is bounded. Determine $\sup S$ and $\inf S$ (provide the proof).

Solution.

Step 1: S is bounded. First, note that for any $n \in \mathbb{N}$

(8)
$$1 = 2 - 1 \le 2 + (-1)^n \le 2 + 1 = 3.$$

Note that for any $n \in \mathbb{N}$

$$(9) n+3 \le 4n,$$

which implies that for any $n \in \mathbb{N}$

$$\frac{n}{n+3} \ge \frac{1}{4}.$$

Moreover, for any $n \in \mathbb{N}$

$$\frac{n}{n+3} < \frac{n}{n} = 1$$

We conclude that for any $n \in \mathbb{N}$

(12)
$$\frac{1}{4} \le \frac{n}{n+3} \cdot 1 \le \frac{n}{n+3} (2 + (-1)^n) < \frac{n}{n} \cdot 3 = 3,$$

and thus for any $x \in S$

$$\frac{1}{4} \le x < 3.$$

Step 2: $\sup S = 3$. Suppose that M < 3. By the Archimedean property there exists $n_0 \in \mathbb{N}$ such that

$$(14) 2n_0 > \frac{3M}{3-M} > 0.$$

Note that

(15)
$$2n_0 > \frac{3M}{3-M} \quad \Leftrightarrow \quad \frac{3 \cdot 2n_0}{2n_0 + 3} > M.$$

Therefore, if M < 3 there exists an element $x \in S$

(16)
$$x = \frac{2n_0}{2n_0 + 3}(2 + (-1)^{2n_0})$$

such that x > M. We conclude that $\sup S = 3$.

Step 3: inf $S = \frac{1}{4}$. Note that for n = 1

(17)
$$\frac{1}{1+3}(1+(-1)^1) = \frac{1}{4} \in S,$$

and as was shown in Step 1, for all $x \in S$, $\frac{1}{4} \le x$. We conclude that $\frac{1}{4} = \min S$. By Example 3 (a) from the textbook, inf $S = \min S = \frac{1}{4}$.

3. By checking the definition of a convergent sequence, compute the limit of the sequence $(a_n)_{n=1}^{\infty}$ with

$$(18) a_n = \sqrt{n+1} - \sqrt{n}.$$

Solution. Firstly, note that

(19)
$$a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$

Now check the definition that $\lim_{n\to\infty} a_n = 0$. Fix $\varepsilon > 0$. Then for any $n > \left[\frac{1}{\varepsilon^2}\right]$

(20)
$$|a_n - 0| = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n}} < \varepsilon.$$

We conclude, that for any $n > N(\varepsilon) := \left[\frac{1}{\varepsilon^2}\right], |a_n - 0| < \varepsilon$, and thus $\lim_{n \to \infty} a_n = 0$.

4. Determine

(21)
$$\lim_{n \to \infty} \left(\frac{1}{2n} - \frac{2}{2n} + \frac{3}{2n} - \dots + \frac{2n-1}{2n} - \frac{2n}{2n} \right).$$

Solution. Note that for all $n \in \mathbb{N}$

(22)
$$\left(\frac{1}{2n} - \frac{2}{2n} + \frac{3}{2n} - \dots + \frac{2n-1}{2n} - \frac{2n}{2n}\right)$$

(22)
$$\left(\frac{1}{2n} - \frac{2}{2n} + \frac{3}{2n} - \dots + \frac{2n-1}{2n} - \frac{2n}{2n}\right)$$

$$= \frac{1-2+3-4+\dots+2n-1-2n}{2n} = \frac{-n}{2n} = -\frac{1}{2}.$$

Therefore,

(24)
$$\lim_{n \to \infty} \left(\frac{1}{2n} - \frac{2}{2n} + \frac{3}{2n} - \dots + \frac{2n-1}{2n} - \frac{2n}{2n} \right) = -\frac{1}{2}.$$

5. Prove that the sequence $(b_n)_{n=1}^{\infty}$ with

(25)
$$b_n = 1 + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 2^2} + \frac{1}{4 \cdot 2^3} + \dots + \frac{1}{n \cdot 2^{n-1}}$$

is convergent.

Solution. Step 1: sequence (b_n) is increasing. For any $n \in \mathbb{N}$

(26)
$$b_{n+1} - b_n = \frac{1}{(n+1)2^n} > 0,$$

therefore, $b_{n+1} > b_n$, the sequence is increasing.

Step 2: sequence (b_n) is bounded. Note that for any $n \in \mathbb{N}$

$$\frac{1}{n2^{n-1}} < \frac{1}{2^{n-1}}.$$

Using the above inequality, we have that for any $n \in \mathbb{N}$

(28)
$$b_n < 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1} = \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < \frac{1}{\frac{1}{2}} = 2.$$

Therefore, sequence (b_n) is bounded above.

Step 3. Theorem 10.2 implies that sequence (b_n) is convergent.