Name (Last, First):
Student ID: \qquad
REMEMBER THIS EXAM IS GRADED BY A HUMAN BEING. WRITE YOUR SOLUTIONS NEATLY AND COHERENTLY, OR THEY RISK NOT RECEIVING FULL CREDIT.

1. Prove that for any $n \in \mathbb{N}$

$$
\begin{equation*}
(2 n)!<2^{2 n}(n!)^{2} \tag{1}
\end{equation*}
$$

Solution. We prove this statement using the principle of mathematical induction. Basis of induction, $n=1$:

$$
\begin{equation*}
(2 \cdot 1)!=2!=2<2^{2 \cdot 1}(1!)^{2}=4 \tag{2}
\end{equation*}
$$

Induction step. Suppose that

$$
\begin{equation*}
(2 n)!<2^{2 n}(n!)^{2} \tag{3}
\end{equation*}
$$

Note that for any $n \in \mathbb{N}$

$$
\begin{equation*}
(2 n+1)(2 n+2)<(2(n+1))^{2} \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
(2(n+1))!=(2 n)!(2 n+1)(2 n+2)<2^{2 n}(n!)^{2}(2 n+2)^{2}=2^{2(n+1)}((n+1)!)^{2} \tag{5}
\end{equation*}
$$

By the principle of mathematical induction, for any $n \in \mathbb{N}$

$$
\begin{equation*}
(2 n)!<2^{2 n}(n!)^{2} \tag{6}
\end{equation*}
$$

2. Prove that the set

$$
\begin{equation*}
S:=\left\{\frac{n}{n+3}\left(2+(-1)^{n}\right): n \in \mathbb{N}\right\} \tag{7}
\end{equation*}
$$

is bounded. Determine $\sup S$ and $\inf S$ (provide the proof).

Solution.

Step 1: S is bounded. First, note that for any $n \in \mathbb{N}$

$$
\begin{equation*}
1=2-1 \leq 2+(-1)^{n} \leq 2+1=3 \tag{8}
\end{equation*}
$$

Note that for any $n \in \mathbb{N}$

$$
\begin{equation*}
n+3 \leq 4 n \tag{9}
\end{equation*}
$$

which implies that for any $n \in \mathbb{N}$

$$
\begin{equation*}
\frac{n}{n+3} \geq \frac{1}{4} \tag{10}
\end{equation*}
$$

Moreover, for any $n \in \mathbb{N}$

$$
\begin{equation*}
\frac{n}{n+3}<\frac{n}{n}=1 \tag{11}
\end{equation*}
$$

We conclude that for any $n \in \mathbb{N}$

$$
\begin{equation*}
\frac{1}{4} \leq \frac{n}{n+3} \cdot 1 \leq \frac{n}{n+3}\left(2+(-1)^{n}\right)<\frac{n}{n} \cdot 3=3 \tag{12}
\end{equation*}
$$

and thus for any $x \in S$

$$
\begin{equation*}
\frac{1}{4} \leq x<3 \tag{13}
\end{equation*}
$$

Step 2: $\sup S=3$. Suppose that $M<3$. By the Archimedean property there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
2 n_{0}>\frac{3 M}{3-M}>0 \tag{14}
\end{equation*}
$$

Note that

$$
\begin{equation*}
2 n_{0}>\frac{3 M}{3-M} \quad \Leftrightarrow \quad \frac{3 \cdot 2 n_{0}}{2 n_{0}+3}>M \tag{15}
\end{equation*}
$$

Therefore, if $M<3$ there exists an element $x \in S$

$$
\begin{equation*}
x=\frac{2 n_{0}}{2 n_{0}+3}\left(2+(-1)^{2 n_{0}}\right) \tag{16}
\end{equation*}
$$

such that $x>M$. We conclude that $\sup S=3$.
Step 3: $\inf S=\frac{1}{4}$. Note that for $n=1$

$$
\begin{equation*}
\frac{1}{1+3}\left(1+(-1)^{1}\right)=\frac{1}{4} \in S \tag{17}
\end{equation*}
$$

and as was shown in Step 1, for all $x \in S, \frac{1}{4} \leq x$. We conclude that $\frac{1}{4}=\min S$. By Example 3 (a) from the textbook, $\inf S=\min S=\frac{1}{4}$.
3. By checking the definition of a convergent sequence, compute the limit of the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ with

$$
\begin{equation*}
a_{n}=\sqrt{n+1}-\sqrt{n} \tag{18}
\end{equation*}
$$

Solution. Firstly, note that

$$
\begin{equation*}
a_{n}=\sqrt{n+1}-\sqrt{n}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \tag{19}
\end{equation*}
$$

Now check the definition that $\lim _{n \rightarrow \infty} a_{n}=0$. Fix $\varepsilon>0$. Then for any $n>\left[\frac{1}{\varepsilon^{2}}\right]$

$$
\begin{equation*}
\left|a_{n}-0\right|=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}<\varepsilon \tag{20}
\end{equation*}
$$

We conclude, that for any $n>N(\varepsilon):=\left[\frac{1}{\varepsilon^{2}}\right],\left|a_{n}-0\right|<\varepsilon$, and thus $\lim _{n \rightarrow \infty} a_{n}=0$.
4. Determine

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{1}{2 n}-\frac{2}{2 n}+\frac{3}{2 n}-\cdots+\frac{2 n-1}{2 n}-\frac{2 n}{2 n}\right) \tag{21}
\end{equation*}
$$

Solution. Note that for all $n \in \mathbb{N}$

$$
\begin{align*}
& \left(\frac{1}{2 n}-\frac{2}{2 n}+\frac{3}{2 n}-\cdots+\frac{2 n-1}{2 n}-\frac{2 n}{2 n}\right) \tag{22}\\
& \quad=\frac{1-2+3-4+\cdots+2 n-1-2 n}{2 n}=\frac{-n}{2 n}=-\frac{1}{2} . \tag{23}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{1}{2 n}-\frac{2}{2 n}+\frac{3}{2 n}-\cdots+\frac{2 n-1}{2 n}-\frac{2 n}{2 n}\right)=-\frac{1}{2} \tag{24}
\end{equation*}
$$

5. Prove that the sequence $\left(b_{n}\right)_{n=1}^{\infty}$ with

$$
\begin{equation*}
b_{n}=1+\frac{1}{2 \cdot 2}+\frac{1}{3 \cdot 2^{2}}+\frac{1}{4 \cdot 2^{3}}+\cdots+\frac{1}{n \cdot 2^{n-1}} \tag{25}
\end{equation*}
$$

is convergent.
Solution. Step 1: sequence $\left(b_{n}\right)$ is increasing. For any $n \in \mathbb{N}$

$$
\begin{equation*}
b_{n+1}-b_{n}=\frac{1}{(n+1) 2^{n}}>0 \tag{26}
\end{equation*}
$$

therefore, $b_{n+1}>b_{n}$, the sequence is increasing.
Step 2: sequence $\left(b_{n}\right)$ is bounded. Note that for any $n \in \mathbb{N}$

$$
\begin{equation*}
\frac{1}{n 2^{n-1}}<\frac{1}{2^{n-1}} \tag{27}
\end{equation*}
$$

Using the above inequality, we have that for any $n \in \mathbb{N}$

$$
\begin{equation*}
b_{n}<1+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n-1}=\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}<\frac{1}{\frac{1}{2}}=2 . \tag{28}
\end{equation*}
$$

Therefore, sequence $\left(b_{n}\right)$ is bounded above.
Step 3. Theorem 10.2 implies that sequence $\left(b_{n}\right)$ is convergent.

