MATH 142A: Introduction to Analysis

www.math.ucsd.edu/~ynemish/teaching/142a

Today: Natural, rational, algebraic numbers > Q\&A: January 5 Next: Ross § 3

Week 1:

- visit course website
- homework 0 (due Friday, January 7)
- join Piazza

Logical symbolism
Common logical connectives Example:
A: Alice plays accordion
B: Bob reads a book
C : Alice and Bob stay at home

Typical mathematical statement:
Typical proof:

Logical symbolism
Basic rules for constructing proofs

- if A is true and $A \Rightarrow B$.
- the law of excluded middle:
\rightarrow used in proofs by contradiction
- rule of double negation:

Use words instead of symbols (most of the time)

$$
A \Rightarrow B
$$

A implies B
B follows from A
B is necessary condition for A
A is sufficient condition for B
$A \Leftrightarrow B$
A is equivalent to B
A if and only if B
A is necessary and sufficient for B

Logical symbolism
Think about the following statements

Set theory notation
A set is a "collection of distinguishable objects"

- a set may consist of any distinguishable objects
- a set is uniquely determined by the collection of objects it consists of
- a set can be defined as a collection of objects having certain property
- listing objects
- the set of all objects x that satisfy property P

If S is a set, means that x is an element of S x is not an element of S

Set theory notation
$S_{1} T$ are two sets, then means that each element of T belongs to S.

Defining a set from another set by specifying a rule

Operations on sets
If we have 2 sets S, T, then

- SIT= is the difference between S and T
- SUT= is the union of S and T
- $S \cap T=$ is the intersection of S and T

Set theory notation
A is a set, $S_{\alpha}, \alpha \in \mathcal{A}$, is a collection of sets, then $\bigcup_{\alpha \in \alpha} S_{\alpha}=\left\{x: x \in S_{\alpha}\right.$ for at least one $\left.\alpha \in \alpha\right\}$

$$
\bigcap_{\alpha \in A} S_{\alpha}=\left\{x: x \in S_{\alpha} \text { for all } \alpha \in \alpha\right\}
$$

Examples

Empty set is the set with no elements, ϕ

$$
\begin{aligned}
& S=\{1,2,3\} \\
& T=\{4,5,6\}
\end{aligned}
$$

Natural numbers
We assume that we know what natural numbers are: numbers we use to count objects.

Peans Axioms:
Ni. $I \in \mathbb{N}$
Ne. $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N}$
N3. For any $n \in \mathbb{N}, n+1=1$ is false
N4. $(m, n \in \mathbb{N}) \wedge(m+1=n+1) \Rightarrow m=n$
N 5 .
Properties N1-N5 define \mathbb{N} uniquely.

Principle of mathematical induction
Let $P_{1}, P_{2}, P_{3}, \ldots$ be a list of statements that may or may not be true. Then
(I_{1})
(I_{2})
$\left(I_{1}\right)$ basis of induction $\left(I_{2}\right)$ induction step
N5. $S \subset \mathbb{N} \wedge \mid \in S \wedge(n \in S \Rightarrow n+l \in S) \Rightarrow S=\mathbb{N}$
Suppose that $\left(I_{1}\right)$ and $\left(I_{2}\right)$ hold. Define

$$
\begin{aligned}
& \left(I_{1}\right) \Rightarrow \\
& \left(I_{2}\right) \Rightarrow
\end{aligned}
$$

Example
Prove that for real $x>-1$ and for any $n \in \mathbb{N}$

$$
(1+x)^{n} \geq 1+n x
$$

Solution: Fix $x>-1$. Denote $P_{n}:(1+x)^{n} \geq 1+n x$.

Remark
Principle of mathematical induction with different basis Let $P_{1}, P_{2}, P_{3}, \ldots$ be a list of statements that may or may not be true. Let $k \in \mathbb{N}$. Then
$\left(I_{1}^{\prime}\right) P_{k}$ is true

$\left\lvert\, \Rightarrow$| all statements $P_{k}, P_{k+1}, P_{k+2}, \ldots$ |
| :--- |
| are true |\right.

$\left(I_{2}^{\prime}\right) P_{n}$ is true $\Rightarrow P_{n+1}$ is true for all $n \geq k$
Proof. Define mathematical induction for
Example Prove that for all $n \in \mathbb{N}, n \geq 2$
Solution.

Integer and rational numbers
integer numbers
rational numbers
is closed with respect to four arithmetic operations
Are there any other numbers?
Consider polynomial equation

Algebraic numbers
Definition 2.1 (Algebraic number)
A number is called algebraic if it satisfies a polynomial equation - where C_{0}, \ldots, C_{n} are integers and $n \geqslant 1$.
Remark Rational numbers are algebraic numbers: for $q=\frac{k}{l}$ take - giving the equation

Examples of algebraic numbers:
$\sqrt{2} \notin \mathbb{Q}$
Theorem 2.2 (Rational Zeros Theorem)
Suppose that $c_{0}, c_{1}, \ldots, c_{n}$ are integers and r is a rational number satisfying the polynomial equation

Let $r=\frac{c}{d}$ where c and d are integers having no common factors. Then C divides c_{o} and d divides c_{n}.

Proof. No proof.
Corollary.
Proof.

