MATH 142A: Introduction to Analysis

math-old.ucsd.edu/~ynemish/teaching/142a

Today: Subsequences > Q\&A: Jan 28
 Next: Ross § 11-12

Week 4:

- Homework 3 (due Sunday, January 30)

Subsequences

$$
\begin{aligned}
& a_{n}=(-1)^{n}, n \geq 1:-1,1,-1,1,-1,1,-1,1, \ldots \\
& \left.b_{n}=\cos \left(\frac{\pi n}{2}\right), n \geq 1: 0,-1,0,1,0,-1,0,1,0,-1,0,1, \ldots\right) \\
& c_{n}=n, n \geq 1: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \ldots \\
& d_{n}=\cos (n), n \geq 1: \cos (1), \cos (2), \cos (3), \cos (4), \cos (5), \cos (6),
\end{aligned}
$$

Def 11.1 Let $\left(S_{n}\right)$ be a sequence of real numbers and let be an increasing sequence of natural numbers.

Subsequences
Thm 11.2 Let $\left(S_{n}\right)$ be a sequence. Let $t \in \mathbb{R}$.
(i) There exists a (monotonic) subsequence of $\left(s_{n}\right)$ converging to t

$$
\Leftrightarrow
$$

Proof. (\Rightarrow) Exercise.
$(\Leftrightarrow) \forall \varepsilon>0$ the set $\left\{n \in \mathbb{N}:\left|s_{n}-t\right|<\varepsilon\right\}$ is infinite.
Case 1: the set $\left\{n: s_{n}=t\right\}$ is infinite, take $\left(s_{n_{k}}\right)$ with $s_{n_{k}}=t \quad \forall k$.
Case 2: $\forall \varepsilon>0$ the set is infinite.
Either (a) $\forall \varepsilon>0$
is infinite $\frac{(-\varepsilon)}{t-\varepsilon}$
or
(b) $\forall \varepsilon>0$ is infinite

Consider Case 2(a). We want to construct an increasing subsequence that converges to t.

Proof of Thy 11.2 (i)
Suppose that $\forall \varepsilon>0 \quad\left\{n: t-\varepsilon<s_{n}<t\right\}$ is infinite
(1) Choose n_{1} such that

(2) Take
, so that
, and thus the set is infinite.
Choose
Then
(1)) Suppose we have numbers $n_{1}<n_{2}<\cdots<n_{k-1}$ such that Take
$\left\{n: t-\varepsilon<S_{n} c t\right\}$ is infinite \Rightarrow
$\left(S_{n_{k}}\right)_{k=1}^{\infty}$ is a subsequence of $\left(S_{n}\right)_{n=1}^{\infty}$, and

Subsequences
Tho 11.2 Let $\left(S_{n}\right)$ be a sequence.
(ii) $\left(S_{n}\right)$ has a (monotonic) subsequence that diverges to $+\infty$

$$
\Leftrightarrow
$$

(iii) (s_{n}) has a (monotonic) subsequence that diverges to $-\infty$

$$
\Leftrightarrow
$$

Proof (ii) (\Rightarrow) Exercise.
(\Leftrightarrow) Suppose that $\left(S_{n}\right)$ is unbounded above.
(1) Let , so that
(2) (S_{n}) unbounded above \Rightarrow is infinite choose
(1) is infinite, choose
Then $\left(S_{n_{k}}\right)$ is a subsequence, $\forall k$

Subsequences
Thm 11.3 If $\left(S_{n}\right)$ converges, then any subsequence of $\left(S_{n}\right)$ converges to the same limit.

Proof. Let $\left(S_{n_{k}}\right)$ be a subsequence of $\left(S_{n}\right)$.
(1)

Proof by induction:
(2) Suppose $\left(S_{n}\right)$ converges to $s \in \mathbb{R}$. Fix $\varepsilon>0$. Then

Subsequences
Thm 11.4 Every sequence has a monotonic subsequence.
Proof Let $\left(s_{n}\right)$ be a sequence of real numbers.
We say that S_{n} is if

Denote $D=$
Case 1: D is infinite. Take
Then $n_{1}<n_{2}$

$$
n_{k-1}<n_{k}
$$

Case 2: D is finite. Take
Then

Bolzano-Weierstrass Theorem
Thm. 11.5 Every bounded sequence has a convergent subsequence.
Proof Let $\left(S_{n}\right)$ be a bounded sequence.
By Thu 11.4
Since (Sn) is bounded,
$\left(S_{n_{k}}\right)$ is monotonic and bounded, therefore

