MATH 142A: Introduction to Analysis

math-old.ucsod.edu/~ynemish/teaching/142a

Today: Taylor's formula Little-o/big-O notation > Q\&A: March 7

Next: -
Week 10:

- Homework 9 (due Sunday, March 13)
- CAPE at www.cape.ucsd.edu

Taylor's formula
Let $f: I \rightarrow \mathbb{R}$, f has derivatives up to order n at $x_{0} \in I$.
Taylors formula:

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n}\left(x_{0} ; x\right)
$$

Taylor's Thy: If $f \in D^{(n)}(\bar{I}), f \in D^{(n+1)}(I), f, f_{1}^{\prime} f^{(2)}, \ldots, f^{(n)} \in C(\bar{I})$. then for any function $\varphi \in C(\bar{I}), \varphi \in D(I), \forall x \in I \quad \varphi^{\prime}(x) \neq 0$ there exists $\xi \in I$ s.t.

$$
R_{n}\left(x_{0} ; x\right)=\frac{\varphi(x)-\varphi\left(x_{0}\right)}{\varphi^{\prime}(\xi) n!} f^{(n+1)}(\xi)(x-\xi)^{n}
$$

Cauchy's form of the remainder term $R_{n}\left(x_{0} ; x\right)=\frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^{n}\left(x-x_{0}\right)$ Lagrange's form of the remainder term $R_{n}\left(x_{0} ; x\right)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$

Example
IE 19 Let $f(x)=, \alpha \in \mathbb{R}, x>-1$. Then (Lecture 22) $\forall n \in \mathbb{N} \quad f^{(n)}(x)=$
Taylor's formula at $x_{0}=0$:

$$
(1+x)^{\alpha}=
$$

Cauchy's form of the remainder (ξ between x and 0)

$$
R_{n}(0 ; x)=
$$

For $|x|<1 \quad\left|\frac{x-\xi}{1+\xi}\right|=$

$$
\left|R_{n}(0 ; x)\right| \leq(1+|x|)^{\alpha-1} \frac{\alpha(\alpha-1) \cdots(\alpha-n)}{n!}|x|^{n+1}=: c_{n} ;
$$

$\alpha=n \in \mathbb{N} \Rightarrow$ Newton binomial Thu ; if $\alpha=-1 \Rightarrow$ geometric series

Taylor series. Analytic functions
Def 31.18. If the function $f(x)$ has derivatives of all orders $n \in \mathbb{N}$ at x_{0}, we call the series

$$
f\left(x_{0}\right)+\frac{1}{1!} f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+\cdots
$$

the Taylor series of f at point x_{0}.
Remarks 1) If f has derivatives of all orders at x_{0}, this does not imply that the Taylor series of f at x_{0} converges
2) If the Taylor series of f at x_{0} converges, than this does not imply that $\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}=f(x) \quad$ (*)
Functions that satisfy (*) are called analytic
Example of a non-analytic function $f(x)=\left\{\begin{array}{l}0, x=0 \\ e^{-\frac{1}{x^{2}}}, x \neq 0\end{array}\right.$ $f^{(n)}(0)=0 \quad \forall n=0,1,2, \ldots$ (exercise)

Comparison of the Asymptotic Behavior of functions Def $31.19 \cdot$ Let $a \in \mathbb{R}$ and $s \in\left\{a^{-},+\infty\right\}$. For $f, g:(c, s) \rightarrow \mathbb{R}$, $c<s$, we say that f is infinitesimal compared with g as x tends to s, and write
if there exist $c^{\prime} \geq c$ and $h:\left(c^{\prime}, s\right) \rightarrow \mathbb{R}$ such that on (c^{\prime}, s) and

- Let $a \in \mathbb{R}$ and $s \in\left\{a^{+},-\infty\right\}$. For $f, g:(s, c) \rightarrow \mathbb{R}, c>s$ we say that f is infinitesimal compared with g as x tends to s, and write $f=0(g)$ as $x \rightarrow s$, if there exist $c^{\prime} \leqslant c$ and $h:\left(s, c^{\prime}\right) \rightarrow \mathbb{R}$ such that

$$
f(x)=g(x) \cdot h(x) \text { on }\left(s, c^{\prime}\right) \text { and } \lim _{x \rightarrow s} h(x)=0
$$

- $f=0(g)$ as $x \rightarrow a$ if $f=0(g)$ as $x \rightarrow a^{+}$and $f=0(g)$ as $x \rightarrow a^{-}$

Examples

1) $x^{2}=x \cdot x \Rightarrow \quad$ as $x \rightarrow 0$
2) $x=\frac{1}{x} \cdot x^{2}$ on $(0,+\infty) \Rightarrow$
as $x \rightarrow+\infty$
3) $\frac{1}{x^{2}}=\frac{1}{x} \cdot \frac{1}{x}$ on $(0,+\infty) \Rightarrow$
a) $x \rightarrow+\infty$
4) $\frac{1}{x}=x \cdot \frac{1}{x^{2}}$ on $(0,1) \Rightarrow$
as $x \rightarrow 0^{+}$
5) For $a>1, \lim _{x \rightarrow+\infty} \frac{x^{n}}{a^{x}}=0, x^{n}=a^{x} \cdot \frac{x^{n}}{a^{x}}$ on $(0,+\infty) \Rightarrow$ as $x \rightarrow+\infty$
6) $\forall a>0, a \neq 1, \forall \alpha>0 \quad \lim _{x \rightarrow+\infty} \frac{\log _{a} x}{x^{\alpha}}=0 \Rightarrow$ as $x \rightarrow+\infty$
7) $x=x \cdot 1 \Rightarrow$ as $x>0$
8) $\left(\frac{1}{x}+\sin x\right) \cdot x=$ as $x \rightarrow \infty$
9) $(2+\sin x) \cdot x=x$ as $x \rightarrow \infty$, but $(1+\sin x) x$ is not of the same order as x as $x \rightarrow \infty$
10) $x^{2}+x=x^{2}\left(1+\frac{1}{x}\right) \Rightarrow$

Comparison of the Asymptotic Behavior of functions Def $31.19 \cdot$ Let $a \in \mathbb{R}$ and $s \in\left\{a^{-},+\infty\right\}$. For $f, g:(c, s) \rightarrow \mathbb{R}$, $c<s$, we write
if there exist $c^{\prime} \geq c$ and $B:\left(c^{\prime}, s\right) \rightarrow \mathbb{R}$ such that on (c^{\prime}, s) and

- Let $a \in \mathbb{R}$ and $s \in\left\{a^{+},-\infty\right\}$. For $f, g:(s, c) \rightarrow \mathbb{R}, c>s$ we write $f=O(g)$ as $x \rightarrow s$, if there exist $c^{\prime} \leqslant c, B:\left(s, c^{\prime}\right) \rightarrow \mathbb{R}$ s.t. $f(x)=g(x) \cdot B(x)$ on $\left(s, c^{\prime}\right)$ and B is bounded on $\left(c^{\prime}, s\right)$
- $f=O(g)$ as $x \rightarrow a$ if $f=O(g)$ as $x \rightarrow a^{+}$and $f=O(g)$ as $x \rightarrow a^{-}$
- We say that f and g are of the same order as $x \rightarrow s$ and write $f=g$ as $x \rightarrow s$ if $f=O(g)$ and $g=O(f)$ as $x \rightarrow s$ $\Leftrightarrow \exists c_{1}, c_{2} \in(0,+\infty)$ s.t. $c_{1}|g(x)| \leq|f(x)| \leq c_{2}|g(x)|$ on the corresponding $\begin{gathered}\text { interval }\end{gathered}$

Comparison of the Asymptotic Behavior of functions
Def 31.19 Let $a \in \mathbb{R}$ and $s \in\left\{a^{-},+\infty\right\}$. For $f, g:(c, s) \rightarrow \mathbb{R}$, $c<s$, we say that f is equivalent to g as x tends to s, and write as $x \rightarrow 5$, if there exist $c^{\prime} \geq c$ and $Y:\left(c^{\prime}, s\right) \rightarrow \mathbb{R}$ such that
on $\left(c^{\prime}, s\right)$ and

- Let $a \in \mathbb{R}$ and $s \in\left\{a^{+},-\infty\right\}$. For $f, g:(s, c) \rightarrow \mathbb{R}, c>s$ we say that f is equivalent to g as x tends to s, and write $f \sim g$ as $x \rightarrow s$, if there exist $c^{\prime} \leq c$ and $\gamma:\left(s, c^{\prime}\right) \rightarrow \mathbb{R}$ such that
$f(x)=g(x) \cdot \gamma(x)$ on $\left(s, c^{\prime}\right)$ and $\lim _{x \rightarrow s} \gamma(x)=1$
- fig as $x \rightarrow a$ if $f \sim g$ as $x \rightarrow a^{+}$and $f \sim g$ as $x \rightarrow a^{-}$

Taylor's formula
Lemma 31.20 Let $x_{0} \in \mathbb{R}, \bar{I}$ be a closed interval with endpoint x_{0}, let φ be a function defined on $\bar{I}, \varphi \in D^{(n)}(\bar{I})$, and

$$
\varphi\left(x_{0}\right)=\varphi^{\prime}\left(x_{0}\right)=\cdots=\varphi^{(n)}\left(x_{0}\right)=0 \text {. Then }
$$

as $x \rightarrow x_{0}$ along \bar{I}.
Proof. (By induction). If $n=1$, then

$$
\varphi(x)=
$$

Suppose ($* *$) holds for $n=k-1$. Consider φ^{\prime}

$$
\text { as } x \rightarrow x_{0} \text { along } \bar{I}
$$

By Lagrange's the, for $x \in \bar{I}$ close enough to $x_{0} \exists \xi$ between x_{0} and x as $\bar{I}_{\partial x \rightarrow x_{0}}$
$\begin{array}{ll}\Rightarrow|\varphi(x)| \quad & \Rightarrow \quad \text { proves induction step }\end{array}$

Taylor's formula (local). Peano's form of the remainder The 31.21 Let $x_{0} \in \mathbb{R}, \bar{I}$ be a closed interval with end point x_{0}, let f be a function defined on $\bar{I}, f \in D^{(n)}(\bar{I})$. Then

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

$$
, x \in \bar{I}
$$

Proof. Apply Lemma 31.20 with $\varphi(x)=$
Remark If $f \in D^{(n+1)}(I)$ and $f^{(n+1)}$ is bounded near x_{0}, then

$$
\begin{aligned}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right) & +\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& +O\left(\left(x-x_{0}\right)^{n+1}\right) \text { as } x \rightarrow x_{0}, x \in I
\end{aligned}
$$

Examples

1) Asymptotic formulas as $x \rightarrow 0$

$$
\begin{aligned}
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+O\left(x^{n+1}\right) \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+O\left(x^{2 n+3}\right) \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+O\left(x^{2 n+2}\right) \\
& \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n+1} x^{n}}{n}+O\left(x^{n+1}\right) \\
& (1+x)^{\alpha}=1+\frac{\alpha}{1!} x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} x^{n}+O\left(x^{n+1}\right)
\end{aligned}
$$

2) Approximate \sin by a polynomial P_{n} s.t. $\max _{x \in[-1,1]}\left|\sin x-P_{n}(x)\right| \leq 10^{-3}$ Take $P_{n}=P_{n}(0 ; x)$ Taylors polynomial at 0 . By Lagrange's formula $\left|R_{2 n+2}(0 ; x)\right|=\left|\frac{\sin \left(\xi+\frac{\pi}{2}(2 n+3)\right)}{(2 n+3)!}\right||x|^{2 n+3}$
