MATH 142A: Introduction to Analysis

math-old.ucsd edu/~ynemish/teaching/142a

Today: Limits of functions > Q\&A: February 16
 Next: Ross § 20

Week 7:

- Homework 6 (due Sunday, February 20)
- Midterm 2 (Wednesday, February 23): Lectures 8-16

Limit of a Function
Def 17.1 (Continuity). Let f be a real-valued function, $\operatorname{dom}(f) \subset \mathbb{R}$. Function f is continuous at $x_{0} \in \operatorname{dom}(f)$ if for any sequence $\left(x_{n}\right)$ in $\operatorname{dom}(f)$ converging to x_{0}, we have $\lim f\left(x_{n}\right)=f\left(x_{0}\right)$

$$
\lim f\left(x_{n}\right)=f\left(\lim x_{n}\right)
$$

Def 20.1 (Limit of a function)
Let $S \subset \mathbb{R}, a, L \in \mathbb{R} \cup\{-\infty,+\infty\}$, suppose that there is a sequence in S for which a is the limit. Let $f: S \rightarrow \mathbb{R}$ be a function.
We say that f tends to L as x tends to a along S, or that L is the limit of f as x tends to a along S, if for every sequence $\left(x_{n}\right)$ in S). Notation

Limit of a Function
Definitions 20.3
(a) We say that f tends to L as x tends to a, or that L is the (two-sided) limit of f as x tends to a if $\lim _{s \ni x \rightarrow a} f(x)=L$ for $S=$

$$
\begin{aligned}
& s=x \rightarrow a \\
& ; \lim _{x \rightarrow a} f(x)=L
\end{aligned}
$$

(b) L is the right-hand limit of f at a if

$$
\lim _{S \geqslant x \rightarrow a} f(x)=L \text { for } S=\quad \text { with } c>0 ; \lim _{x \rightarrow a^{+}} f(x)=L
$$

(c) L is the left-hand limit of f at a if $\lim _{S \rightarrow x \rightarrow a} f(x)=L$ for $S=\quad$ with $c>0 ; \lim _{x \rightarrow a^{-}} f(x)=L$
(d)

$$
\begin{array}{ll}
\lim _{x \rightarrow+\infty} f(x)=L \Leftrightarrow & \lim _{S \rightarrow} f(x)=L \text { for } S= \\
\lim _{x \rightarrow-\infty} f(x)=L \Leftrightarrow & , c \in \mathbb{R} \\
\lim _{x \rightarrow+\infty} f(x)=L \text { for } S= & , c \in \mathbb{R}
\end{array}
$$

Examples

1) $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$

Take any $c>0$. Take any sequence $\left(x_{n}\right)$ in $(-c, c) \backslash\{0\}$ s.t. $\lim x_{n}=0$. Then $x \mapsto x \sin \left(\frac{1}{x}\right)$ is well-defined for all x_{n}.
Fix $\varepsilon>0$,
2) $\lim _{x \rightarrow+\infty} x \sin \left(\frac{1}{x}\right)=1$

Take any $c>0$. Take any sequence $\left(x_{n}\right)$ in $\left(c_{1}+\infty\right), \lim x_{n}=+\infty$.
Denote $y_{n}=\frac{1}{x_{n}}$. Then by T.9.10

Limits and arithmetic operations
The 20.4 Let f_{1} and f_{2} be functions for which the limits $L_{1}=\lim _{s \exists x \rightarrow a} f_{1}(x)$ and $L_{2}=\lim _{s \ni x \rightarrow a} f_{2}(x)$ exist and are finite. Then
(i) $\lim _{s \exists x \rightarrow a}\left(f_{1}+f_{2}\right)(x)=L_{1}+L_{2}$
(ii) $\lim _{s \geqslant x \rightarrow a}\left(f_{1} f_{2}\right)(x)=L_{1} \cdot L_{2}$
(iii) if $L_{2} \neq 0$ and $f_{2}(x) \neq 0$ for $x \in S$, then $\lim _{S \rightarrow x \rightarrow a} \frac{f_{1}}{f_{2}}(x)=\frac{L_{1}}{L_{2}}$

Proof. Follows from Thm. 9.3, 9.4, 9.6.
Take any sequence $\left(x_{n}\right)$ in S that converges to a. Then $\lim f_{1}\left(x_{n}\right)=L_{1}, \lim f_{2}\left(x_{n}\right)=L_{2}$. Then
(i) By Thm $9.3 \lim \left(f_{1}\left(x_{n}\right)+f_{2}\left(x_{n}\right)\right)=\lim f_{1}\left(x_{n}\right)+\lim f_{2}\left(x_{n}\right)=L_{1}+L_{2}$
(ii) By Thm $9.4 \quad \lim \left(f_{1}\left(x_{n}\right) \cdot f_{2}\left(x_{n}\right)\right)=\lim f_{1}\left(x_{n}\right) \cdot \lim f_{2}\left(x_{n}\right)=L_{1} \cdot L_{2}$
(iii) By Thm $9.6 \lim \frac{f_{1}\left(x_{n}\right)}{f_{2}\left(x_{n}\right)}=\frac{\lim f_{1}\left(x_{n}\right)}{\lim f_{2}\left(x_{n}\right)}=\frac{L_{1}}{L_{2}}$

Limit of a composition of functions
Thy 20.5
(a) $\lim _{s \ni x \rightarrow a} f(x)=L$
(b) g is defined on $\{f(x): x \in S\} \cup\{L\}$
(c) g is continuous at L

Proof Let $\left(x_{n}\right)$ be a sequence in $S_{1} \lim x_{n}=a$.
(a) \Rightarrow
(b) $+(\mathrm{c}) \Rightarrow$

Example
$f(x)=\sin (x), g(x)=\operatorname{sgn}(x)$-not continuous at 0 . Then for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad g \circ f(x)=$

Examples
4) $f(x)=\operatorname{sgn}(x)=\left\{\begin{array}{cc}1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{array}\right.$
$\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)=1$: let $\left(x_{n}\right)$ be a sequence, $x_{n} \in(0,1), \lim x_{n}=0$. Then
$\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist: Take a sequence

$$
\lim x_{n}=0 \text {, but }
$$

5) $f(x)=\frac{x+1}{x-1}$, not defined at $x=1$

$$
\lim _{x \rightarrow 1^{+}} \frac{x+1}{x-1}=+\infty \text { : take }\left(x_{n}\right)_{1} \lim x_{n}=1, x_{n}>1
$$

Fix $M>0$,
6) If $f: S \rightarrow \mathbb{R}$ is continuous at $a \in S$, then $\lim _{S 3 x \rightarrow a} f(x)=f(a)$ $\frac{x+1}{x-1}$ is continuous at $x=-1$

Important example II
(A) Let $a>1$. Then

Take any sequence $\left(x_{n}\right)$ in $\mathbb{R} \backslash\{0\}, \lim x_{n}=0$. Fix $\varepsilon>0$.
(1) By IE 4
(2) By IE 4 and Thu 9.5
(3) Take ; $\lim x_{n}=0 \Rightarrow$
(4)
(B) Let $a>1$. Then $x \mapsto a^{x}$ - Take $x_{0} \in \mathbb{R}_{1}$ take $\left(x_{n}\right), x_{n} \neq x_{0}, \lim x_{n}=x_{0}$. Then

Important example II
(c) $\forall a>0, x \mapsto a^{x}$ is continuous on \mathbb{R} If $a \in(0,1)$, then $\forall x \in \mathbb{R}$, where is continuous by $(B), \quad$ is continuous by Thy 17.3 composition $g \circ f(x)$ is continuous (on \mathbb{R}) by Chm 17.5 If $a=1$, then $a^{x}=1 \forall x$, continuous.
(D) $\forall a>0, a \neq 1, x \mapsto \log _{a} x$ is continues on $(0,+\infty)$ by Thm 18.4 $x \rightarrow a^{x}$ is strictly increasing $(a>1)$ or strictly decreasing $(a<1)$ and maps \mathbb{R} to $(0,+\infty)$

