MATH 142A: Introduction to Analysis

math-old.ucsd edu/~ynemish/teaching/142a

Today: Uniform continuity
 > Q\&A: February 11
 Next: Ross § 19

Week 6:

- Homework 5 (due Sunday, February 13)

Inverse function
Def 18.9 Function $f: X \rightarrow Y$ is called one-to-one (or bijection) if $f(x)=y$ and $\forall y \in Y \exists!x \in X$ s.t. $f(x)=y$
Example $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$ is one-to-one $\sin :[0, \pi] \rightarrow[0,1]$ is not one-to-one

$$
\sin (0)=\sin (\pi)=0
$$

Def 18.10 Let $f: x \rightarrow y$ be a bijection, $y=f(x)$.
Then the function $f^{-1}: y \rightarrow X \quad$ given by $\left(f^{-1}(y)=x \Leftrightarrow f(x)=y\right)$ is called the inverse of f. In particular $f^{-1}(f(x))=x, f\left(f^{-1}(y)\right)=y$
Example $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1], \quad \sin ^{-1}=\arcsin :[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\text { - } f:[0,+\infty) \rightarrow[0,+\infty), f(x)=x^{m}, f^{-1}:[0,+\infty) \rightarrow[0,+\infty), f^{-1}(x)=x^{\frac{1}{m}}=\sqrt[m]{x}
$$

- If f is strictly increasing (decreasing) on x, then $f: x \rightarrow f(x)$ is a bijection

Continuity and the inverse function
Thy 18.4 Let f be a continuous strictly increasing function on some interval I. Then $J=f(I)$ is an interval and $f^{-1}: J \rightarrow I$ is
Proof (1) f^{-1} is strictly increasing: Take $y_{11} y_{2} \in J, y_{1}<y_{2}$
Denote $x_{1}=f^{-1}\left(y_{1}\right), x_{2}=f^{-1}\left(y_{2}\right)$. Then
If $x_{1} \geq x_{2}$, then
(2) J is an interval: By Cor. 18.3 J is either an or a Since f is strictly increasing, J is an
(3) $(1)+(2)+$

One-to-one continuous functions
The 18.6 Let f be a one-to-one continuous function on an interval I. Then f is or
Proof. (1) If $a<b<c$ then either or Otherwise, \qquad or
If $f(b)>\max \{f(a), f(c)\}$, choose
Then by The 18.2
Similarly when $f(b)<\min \{f(a), f(c)\}$.
(2) Take any $a_{0}<b_{0}$. If $f\left(a_{0}\right)<f\left(b_{0}\right)$, then f is on I.
(3) Similarly, if $f\left(a_{0}\right)>f\left(b_{0}\right)$, then f is decreasing.

Uniform continuity
Def. (Continuity on a set) Function f is continuous on $S \subset \mathbb{R}$ if $\forall x \in S \quad \forall \varepsilon>0 \quad \exists \delta>0 \forall y \in S$ s.t. $|x-y|<\delta \quad(|f(x)-f(y)|<\varepsilon)$

Def. (Uniform continuity) Function f is uniformly continuous on $S \subset \mathbb{R}$ if
Example Let $f(x)=\frac{1}{x}$.

1) $\forall[a, b] \subset(0,+\infty) \quad f$ is unif. cont. on $[a, b]$.

Fix $\varepsilon>0$. Then for $x, y \in[a, b]$

- Take

Then
2) f is not unif. cont. on $(0,1]$. Fix
 Then , but

Cantor-Heine Theorem
Remark If f is uniformly continuous on $S \subset \mathbb{R}$, then f is continuous on S.
Thm 19.2 If f is continuous on a closed interval $[a, b]$, then f is
Proof. Suppose that f is cont. but not unif. cont. on $[a, b]$. \Rightarrow
Take
and thus
, so

Uniform continuity
The 19.4 If f is uniformly continuous on a set S, and
$\left(s_{n}\right)$ is a Cauchy sequence in S, then $\left(f\left(s_{n}\right)\right)$ is a Cauchy sequence
Proof. Fix $\varepsilon>0$.
(1) f is unif. cont on S
(2) $\left(S_{n}\right)$ is a Cauchy sequence

Example
Consider $f(x)=\frac{1}{x}$ and $t_{n}=\frac{1}{n} .\left(t_{n}\right)$ is a Cauchy sequence, $\forall_{n} t_{n} \in(0,1]$, but $f\left(t_{n}\right)=n$ is not a Cauchy y sequence. $\Rightarrow f$ is not unif. cont. on $(0,1]$.

Examples
3) $f(x)=x^{2}$ is continuous on \mathbb{R}, but is not unif. continuous on \mathbb{R}.

Take a sequence
(i)
(ii)
4) $f(x)=$ is continuous and bounded on \mathbb{R}, but not unif. continuous on \mathbb{R}
Take Then
(i)
(ii)

