MATH 142A: Introduction to Analysis

math-old.ucsd.edu/~ynemish/teaching/142a

Today: Continuous functions $>$ Q\&A: February 7
 Next: Ross § 18

Week 6:

- Homework 5 (due Sunday, February 13)
- Homework 3 regrades Tuesday, February 8

Functions
Def. (Function) Let X and Y be two sets. We say that there is a function defined on X with values in Y, if via some rule f we associate to each element $x \in X$ an (one) element $y \in Y$. We write $f: X \rightarrow Y, x \stackrel{f}{\mapsto} y$ (or $y=f(x)$).
X is called the domain of definition of the function, $\operatorname{dom}(f)$, $y=f(x)$ is called the image of $x . \quad f:[0,1) \rightarrow[0,1), x \mapsto x^{2}$ Remarks 1) We consider real-valued functions $(Y \subset \mathbb{R})$ of one real variable $(X \subset \mathbb{R})$.
2) If $\operatorname{dom}(f)$ is not specified, then it is understood that we take the natural domain: the largest subset of \mathbb{R} which the function is well defined $\binom{f(x)=\sqrt{x}$ means $\operatorname{dom}(f)=[0,+\infty)}{g(x)=\frac{1}{x^{2}-x}$ means $\operatorname{dom}(g)=\mathbb{R} \backslash\{0,1\}}$

Continuity of a function at a point
Intuitively: Function f is continuous at point $x_{0} t \operatorname{dom}(f)$ if $f(x)$ approaches $f\left(x_{0}\right)$ as x approaches x_{0}.
Def 17.1 (Continuity). Let f be a real-valued function, $\operatorname{dom}(f) \subset \mathbb{R}$. Function f is continuous at $x_{0} \in \operatorname{dom}(f)$ if for any sequence $\left(x_{n}\right)$ in $\operatorname{dom}(f)$ converging to x_{0}, we have

Def 17.6 (Continuity) Let f be a real-valued function. Function f is continuous at $x_{0} \in \operatorname{dom}(f)$ if

Remark Def 17.1 is called the sequential definition of continuity, Def 17.6 is called the $\varepsilon-\delta$ definition of continuity.

Equivalence of sequential and $\varepsilon-\delta$ definitions
The 17.2. Definitions 17.1 and 17.6 are
Proof $(17.1 \Rightarrow 17.6)$. Suppose that ($*$) fails

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad\left(x \in \operatorname{dom}(f) \wedge\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right) \quad(*)
$$

This means that

Take $\delta=$:

$$
\Rightarrow
$$

(\Leftrightarrow). Let $\left(x_{n}\right)$ be such that $\lim x_{n}=x_{0}$. Fix $\varepsilon>0$. By $(*)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}=x_{0} \Rightarrow \\
& \forall n>N\left(x_{n} \operatorname{dom}(f) \wedge\left(x_{n}-x_{0} \mid<\delta\right) \stackrel{(*)}{\Rightarrow}\right.
\end{aligned}
$$

Continuity on a set. Examples
Def 17.1 Let f be a function, and let $S c \operatorname{dom}(f)$. f is continuous on S if for all $x_{0} \in S \quad f$ is continuous at x_{0}.
Example 1) $f(x)=\frac{2 x}{x^{2}-1}$ is continuous on $\mathbb{R} \backslash\{-1,1\}$
Proof. Let $x_{0} \in \mathbb{R} \backslash\{-1,1\}$ and let $\left(x_{n}\right)$ be such that $\forall n x_{n} \notin\{-1,1\}$ and $\lim x_{n}=x_{0}$. Then by Thm $9.2,9.3,9.6$

$$
\lim f\left(x_{n}\right)=
$$

By Def $\mathbb{R} .1 \quad f$ is continuous at x_{0} for any $x_{0} \in \mathbb{R} \backslash\{-1,1\}$
2) $g(x)=\sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $g(0)=a$. Then for any $a \in \mathbb{R}$ g is not continuous at 0 .
Proof Take $\left(x_{n}\right)$ with $x_{n}=$ Then and

Continuity and arithmetic operations
The 17.3 Let f be a real-valued function with $\operatorname{dom}(f) \subset \mathbb{R}$. If f is continuous at $x_{0} t \operatorname{dom}(f)$, then

Proof. Let $\left(x_{n}\right)$ be a sequence in $\operatorname{dom}(f)$ such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
Then by Thy 9.2
Therefore $k \cdot f$ is continuous at x_{0}.
By the triangle inequality
Fix $\varepsilon>0$. Then $\lim f\left(x_{n}\right)=f\left(x_{0}\right) \Rightarrow$
Then $\forall n>N$
This means that $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right|=\left|f\left(x_{0}\right)\right|,|f|$ is continuous at x_{0}.

Continuity and arithmetic operations
The 17.4 Let f and g be real-valued functions that are continuous at $x_{0} \in \mathbb{R}$. Then
(i) $f+g$ is continuous at x_{0}
(ii) $f \cdot g$ is continuous at x_{0}
(iii) if $g\left(x_{0}\right) \neq 0$, then $\frac{f}{g}$ is continuous at x_{0}.

Proof: Note that if $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$, then $(f+g)(x)=f(x)+g(x)$ and $f \cdot g(x)=f(x) \cdot g(x)$ are well -defined. Moreover, if $x \in \operatorname{dom}(f) n \operatorname{dom}(g)$ and $g(x) \neq 0$, then $\frac{f}{g}(x)=\frac{f(x)}{g(x)}$ is well-defined.
Let $\left(x_{n}\right)$ be a sequence in $\operatorname{dom}(f) \cap \operatorname{dom}(g)$ s.t. $\lim x_{n}=x_{0}$.
Then $\lim \left(f\left(x_{n}\right)+q\left(x_{n}\right)\right)=$, and

$$
\lim \left(f\left(x_{n}\right) \cdot g\left(x_{n}\right)\right)=
$$

- If moreover $\forall n g\left(x_{n}\right) \neq 0$
then $\lim \frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}=$

Continuity of a composition of functions
Let f and g be real-valued functions. If $x \in \operatorname{dom}(f)$ and $f(x) \in \operatorname{dom}(g)$, then we define
Thy 17.5 If f is continuous at x_{0} and g is continuous at $f\left(x_{0}\right)$, then
Proof It is given that $x_{0} \in \operatorname{dom}(f)$ and $f\left(x_{0}\right) \in \operatorname{dom}(g)$.
Let $\left(x_{n}\right)$ be a sequence such that
and
$\lim x_{n}=x_{0}$. Denote

- Since f is continuous
at $x_{0}, \lim y_{n}=$
at $f\left(x_{0}\right)=y_{0}$, we have $\lim g \circ f\left(x_{n}\right)=$
Therefore, got is continuous at x_{0}.

Examples

1) $\sin (x)$ is continuous on \mathbb{R}

Proof (1) Enough to show that $\sin (x)$ is continuous at 0 For any $x_{0} \in \mathbb{R}$ and $\left(x_{n}\right)$ with $\lim x_{n}=x_{0}$

$$
\left|\sin \left(x_{n}\right)-\sin \left(x_{0}\right)\right|=
$$

(2) $\operatorname{Area}(\Delta) \leqslant \operatorname{Area}(\Delta)$

$$
\Rightarrow \forall x \in\left[0, \frac{\pi}{2}\right]
$$

$$
\Rightarrow
$$

(3) If $\lim y_{n}=0$, then

$$
\forall n>N
$$

Examples
2) $f(x)=\sqrt{x}$ is continuous on $[0,+\infty)$.
(1) \sqrt{x} is continuous at 0

Let $\lim x_{n}=0$. Fix $\varepsilon>0$. Then
(2)

$$
\Rightarrow
$$

Let $x_{0} \in(0,+\infty), \underset{\text { тg.n(i) }}{\left(x_{n}\right)}$ s.t. $\forall n\left(x_{n \in}[0,+\infty)\right)$ and $\lim x_{n}=x_{0}$
Then $\lim x_{n}=x_{0}>0 \Rightarrow$
Fix $\varepsilon>0$. Then
Then
$\forall n>\max \left\{N_{1}, N_{2}\right\} \quad\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|=\left|\sqrt{x_{n}}-\sqrt{x_{0}}\right|=$
3) $\cos (x)$ is continuous on $\mathbb{R} \cdot \cos (x)=$, by Thm 17.4 is continuous on \mathbb{R}. Moreover, $\forall x \in \mathbb{R}$ \Rightarrow by example 2) and Thu 17.5

