MATH 142A: Introduction to Analysis

math-old.ucsd.edu/~ynemish/teaching/142a

Today: Series
 > Q\&A: February 2
 Next: Ross § 15

Week 5:

- Homework 4 (due Sunday, February 6)

Sequences $\left|\frac{S_{n+1}}{S_{n}}\right|$ and $\sqrt[n]{\left|S_{n}\right|}$
Thy 12.2 Let $\left(S_{n}\right)$ be a sequence, $\forall n\left(S_{n} \neq 0\right)$. Then

Proof. If $l=0$, then $l \leq \beta$. Assume that $l>0$ Take any $0<l_{1}<l$. Then by Thm 9.11 (i)

Therefore,

$$
\Rightarrow
$$

Note that $\left(\tilde{u}_{k}\right)$ is increasing, so $\forall k>N$
Now
So $\forall l_{1} \in(0,1) \quad \Rightarrow \beta$ is an upper bound for $(0, l) \Rightarrow$

Sequences $\left|\frac{S_{n+1}}{S_{n}}\right|$ and $\sqrt[n]{\left|S_{n}\right|}$
Corollary 12.3
If $\lim _{n \rightarrow \infty}\left|\frac{S_{n+1}}{S_{n}}\right|$ exists, and $\lim _{n \rightarrow \infty}\left|\frac{S_{n+1}}{S_{n}}\right|=L$, then

Example
Let $\left(a_{n}\right)$ be a sequence such that $\forall n \in \mathbb{N} a_{n}>0$. Suppose that $\left(a_{n}\right)$ converges, $\lim _{n \rightarrow \infty} a_{n}=a$. Then

Proof. Denote $s_{n}:=a_{1} \cdots a_{n}$. Then
By Corollary 12.3

Series
Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers.
For $p, q \in \mathbb{N}, p<q$ we denote $a_{p}+a_{p+1}+\cdots+a_{q}$ by
Def 14.1 (Infinite series) We call the expression

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

an (infinite) series. a_{n} is called the n-th term of the series.
Def 14.2 (Convergent series)
We call the sum
the $(n-t h)$ partial sum of the series.
If the sequence $\left(S_{n}\right)$ of partial sums converges, we say that the series $\sum_{n=1}^{\infty} a_{n}$
If $\lim _{n \rightarrow \infty} S_{n}=S$, then we call s the sum of the series $\sum_{n=1}^{\infty} a_{n}$, and write it as

Series
If $\lim _{n \rightarrow \infty} s_{n}=+\infty(-\infty)$, we say that $\sum_{n=1}^{\infty} a_{n}$ diverges to $+\infty(-\infty)$ and we write

We say that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely (is absolutely convergent)
if the series
Remark An infinite series can be viewed as a particular type of a sequence, $S_{n}=a_{1}+a_{2}+\cdots+a_{n}$
so we can use all the relevant results.
For example, if $\forall n a_{n} \geq 0$, then s_{n} is increasing.
Partial sums of $\sum_{n=1}^{\infty}\left|a_{n}\right|$ form an increasing sequence.
Use the criteria on convergence for partial sums etc.

Important examples
8. Let $a, r \in \mathbb{R}$. Then is called the geometric series. If $|r|<\mid$, then $\sum_{n=0}^{\infty} a r^{n}=$
Proof Denote $S_{k}=\sum_{n=0}^{k} \operatorname{cr}^{n}=$
Note that $r\left(1+r+\cdots r^{k}\right)=$, so
9. Let $p>0$. Then converges iff

Proof $(p=2) . S_{k}:=\sum_{n=1}^{k} \frac{1}{n^{2}}$.(1) $\left(S_{k}\right)$ is increasing
(2) $\left(S_{k}\right)$ is bounded

For any $n \geq 2$, so

Cauchy criterion
Def 14.3 We say that $\sum_{n=1}^{\infty} a_{n}$ satisfies the Cauchy criterion if its sequence of partial sums $\left(S_{n}\right)$ is a Cauchy sequence, ie.

$$
\forall \varepsilon>0 \quad \exists N \quad \forall m, n>N \quad\left|s_{n-} s_{m}\right|<\varepsilon
$$

Thm 14.4 $\sum a_{n}$ converges $\Leftrightarrow \sum a_{n}$ satisfies the Cauchy criterion Proof. Follows from Thu 10.11

Corollary 14.5 (Necessary condition for convergence).

$$
\sum a_{n} \text { converges } \Rightarrow
$$

Proof. Kan converges The. \Leftrightarrow

$$
\Rightarrow \quad \Leftrightarrow \lim a_{n}=0
$$

Example

- $\sum_{k=1}^{\infty} \frac{1}{k 2^{k}}$ satisfies the Cauclny criterion

$$
\begin{array}{ll}
\text { Proof. } \forall k \in \mathbb{N} & \text {, so } \quad \forall n>m \geq 1 \\
& \sum_{k=m+1}^{n} \frac{1}{k 2^{k}} \leq
\end{array}
$$

Fix $\varepsilon>0$. By I.E. 2
Therefore

In particular,

- If $|r| \geq 1$, then the sequence $\left(r^{n}\right)$ does not converge to 0

$$
\Rightarrow
$$

- Consider
, but the series diverges

Comparison test
Thm 14.6 Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequence, $\forall n a_{n} \geq 0$ Then
(i)
(ii)

Proof. (i) Use the Cauchy criterion

Fix $\varepsilon>0$. By Thy 14.4
Then
By Thu 14.4
(ii) Denote $S_{n}=\sum_{k=1}^{n} a_{k}, t_{n}=\sum_{k=1}^{n} b_{k}$. Then

$$
\sum_{n=1}^{\infty} a_{n}=+\infty \Leftrightarrow
$$

