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1. Let a, b, c ∈ R be such that a < b < c and (c− a)(c− b) = (b− a)2. Show that

(1) r :=
c− a
b− a

is not a rational number.
Hint: Show that r satisfies a polynomial equation with integer coefficients.

Solution. Since

(2) r =
c− a
b− a

,

we have that

(3) c− a = r(b− a) and c− b = (c− a)− (b− a) = (r − 1)(b− a).

Plugging the above expressions into the equation (c− a)(c− b) = (b− a)2 we get

(4) (b− a)2(r − 1)r = (b− a)2.

Since b− a > 0, the above equation implies that r satisfies the equation

(5) r2 − r − 1 = 0.

By Corollary 2.3, if r is a rational number, then r ∈ {−1, 1}. Neither r = 1 nor r = −1
satisfies Equation (5), therefore we conclude that r is not a rational number. (Number r is
called the golden ratio)

2. Using only Definition 9.8 prove that

(6) lim
n→∞

log10(log10 n) = +∞.

Clearly indicate how you chose N(M) for any M > 0, and write explicitly N(2), N(5),
N(10).

Solution. Fix M > 0. Then for any n > b1010M c

(7) log10(log10 n) > log10(log10 1010M ) = M.

Therefore, by Definition 9.8

(8) lim
n→+∞

log10(log10 n) = +∞

with N(M) = b1010M c. In particular, N(2) = 10100, N(5) = 10100000, N(10) = 101010. (This
sequence converges to infinity very slowly)

3. Determine if the series

(9)
∞∑
n=1

2nn!

nn

converges. Justify your answer.

Solution. Denote

(10) an :=
2nn!

nn
.
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Notice that

(11)
an+1

an
=

2n+1(n+ 1)!

(n+ 1)n+1
· n

n

2nn!
=

2nn

(n+ 1)n
=

2

(1 + 1
n
)n
.

By the Important Example from Lecture 7,

(12) lim
n→∞

(
1 +

1

n

)n
= e.

By Theorem 9.6,

(13) lim
n→∞

an+1

an
=

2

limn→∞(1 + 1
n
)n

=
2

e
.

By the Important Example 16, e > 2, so 2/e < 1. By Theorem 14.8 (Ratio test) we conclude
that the series

∑
an converges.

4. Let a ∈ R and let f : [a,+∞)→ R be a function such that

(i) f ∈ C([a,+∞))
(ii) limx→+∞ f(x) = p ∈ R

Prove that f is uniformly continuous on [a,+∞).

Solution. Fix ε > 0.
Since limx→+∞ f(x) = p, by the ε − δ definition of the limit (Lecture 18) there exists

M > a such that for any x ∈ (M,+∞)

(14) |f(x)− p| < ε

2
.

Function f is continuous on [a,M +1] ⊂ [a,+∞), therefore by the Cantor-Heine Theorem
(Theorem 19.2) f is uniformly continuous on [a,M +1]. By definition, this means that there
exists δ > 0 such that for all x, y ∈ [a,M + 1]

(15) |f(x)− f(y)| < ε

2
.

Now for any x, y ∈ [a,+∞), x < y, |x− y| < min{δ, 1}, we have

• if y ≤M + 1, then by (15) |f(x)− f(y)| < ε.
• if y > M + 1, then x > M and by (14) and the triangle inequality

(16) |f(x)− f(y)| ≤ |f(x)− p|+ |f(y)− p| < ε.

We conclude that x, y ∈ [a,+∞) and |x − y| < min{δ, 1} implies |f(x) − f(y)| < ε. By
Definition (Lecture 15) this means that f is uniformly continuous on [a,+∞).

5. Compute the derivative of the function f : (0,+∞)→ R given by

(17) f(x) = x+ xx.

Provide all intermediate steps.

Solution. First, compute the derivative on xx. For this, rewrite this function as

(18) xx = elog x
x

= ex log x.
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Function x log x is differentiable on (0,+∞), function ex is differentiable on R, therefore by
Theorem 28.4 (about the derivative of a composition)

(19) (xx)′ =
(
ex log x

)′
= ex log x

(
x log x

)′
= ex log x

(
log x+ 1

)
= xx

(
log x+ 1

)
.

Therefore,

(20) f ′(x) = 1 + xx
(

log x+ 1
)
.

6. Prove that the inequality

(21) pyp−1(x− y) ≤ xp − yp ≤ pxp−1(x− y)

holds for 0 < y < x and p > 1.

Solution. Consider function f(x) = xp. Then for any interval [y, x] ⊂ (0,+∞), f is
continuous on [y, x] and differentiable on (y, x). Therefore, we can apply Lagrange’s Mean
Value Theorem (Theorem 29.3), which gives that there exists a number ξ ∈ (y, x) such that

(22) xp − yp = pξp−1(x− y).

Since p > 1, p− 1 > 0, and y < ξ < x, we have that

(23) yp−1 ≤ ξp−1 ≤ xp−1.

Together with (22) this implies that

(24) pyp−1(x− y) ≤ xp − yp ≤ pxp−1(x− y).

7. Let

(25) f :
(
− π

2
,
π

2

)
→ R, f(x) = log(cosx).

Find a polynomial P (x) such that

(26) f(x)− P (x) = o(x3) as x→ 0.

Solution By the local Taylor’s formula with the remainder in Peano’s form, P (x) is equal
to the Taylor’s polynomial of degree 3 about 0. In order to determine the coefficients of
P (x), compute the derivatives of f

f ′(x) = (log(cosx))′ =
1

cosx
· (− sinx) = − sinx

cosx
,(27)

f ′′(x) =
(
− sinx

cosx

)′
= −cos2 x+ sin2 x

cos2 x
= − 1

cos2 x
,(28)

f (3)(x) =
(
− 1

cos2 x

)′
= −2

sinx

cos3 x
.(29)

Now

(30) f(0) = log 1 = 0, f ′(0) = tan 0 = 0, f ′′(0) = −1, f (3)(0) = 0.

We conclude that

(31) f(x) = −x
2

2
+ o(x3) as x→ 0.


