MATH 142A - INTRODUCTION TO ANALYSIS PRACTICE FINAL

WINTER 2021

1. Let $a, b, c \in \mathbb{R}$ be such that $a<b<c$ and $(c-a)(c-b)=(b-a)^{2}$. Show that

$$
\begin{equation*}
r:=\frac{c-a}{b-a} \tag{1}
\end{equation*}
$$

is not a rational number.
Hint: Show that r satisfies a polynomial equation with integer coefficients.
2. Using only Definition 9.8 prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log _{10}\left(\log _{10} n\right)=+\infty \tag{2}
\end{equation*}
$$

Clearly indicate how you chose $N(M)$ for any $M>0$, and write explicitly $N(2), N(5)$, $N(10)$.
3. Determine if the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}} \tag{3}
\end{equation*}
$$

converges. Justify your answer.
4. Let $a \in \mathbb{R}$ and let $f:[a,+\infty) \rightarrow \mathbb{R}$ be a function such that
(i) $f \in C([a,+\infty))$
(ii) $\lim _{x \rightarrow+\infty} f(x)=p \in \mathbb{R}$

Prove that f is uniformly continuous on $[a,+\infty)$.
5. Compute the derivative of the function $f:(0,+\infty) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
f(x)=x+x^{x} \tag{4}
\end{equation*}
$$

Provide all intermediate steps.
6. Prove that the inequality

$$
\begin{equation*}
p y^{p-1}(x-y) \leq x^{p}-y^{p} \leq p x^{p-1}(x-y) \tag{5}
\end{equation*}
$$

holds for $0<y<x$ and $p>1$.
7. Let

$$
\begin{equation*}
f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, \quad f(x)=\log (\cos x) \tag{6}
\end{equation*}
$$

Find a polynomial $P(x)$ such that

$$
\begin{equation*}
f(x)-P(x)=o\left(x^{3}\right) \quad \text { as } \quad x \rightarrow 0 \tag{7}
\end{equation*}
$$

