MATH 142A - INTRODUCTION TO ANALYSIS PRACTICE MIDTERM 2

WINTER 2021

Name (Last, First):

Student ID:

1. Let (s_n) be a monotonic sequence and let (s_{n_k}) be its subsequence. Prove that if the subsequence (s_{n_k}) is a Cauchy sequence, then (s_n) converges.

Solution.

Step 1: (s_{n_k}) is bounded. The sequence (s_{n_k}) is a Cauchy sequence. By Lemma 10.10 (s_{n_k}) is bounded This means that there exists a number M > 0 such that $|s_{n_k}| \leq M$ for all $k \in \mathbb{N}$.

Step 2: (s_n) is bounded. By the definition of a subsequence, $k \leq n_k$ for any $k \in \mathbb{N}$. If (s_n) is increasing, then for all $k \in \mathbb{N}$

(1)
$$k \le n_k \Rightarrow s_k \le s_{n_k} \le M,$$

and thus (s_n) is bounded above. If (s_n) is decreasing, then for all $k \in \mathbb{N}$

(2)
$$k \le n_k \Rightarrow s_k \ge s_{n_k} \ge -M,$$

and thus (s_n) is bounded below.

Step 3: (s_n) converges. Sequence (s_n) is monotonic and bounded, therefore by Theorem 10.2 (s_n) converges.

2. Determine the set of the partial limits, limit and lim sup of the sequence (x_n) given by

(3)
$$x_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$$

Remark. Partial limit is another term used to describe the subsequential limit.

Solution. Denote

(4)
$$s_n = \frac{(-1)^n}{n}, \quad t_n = \frac{1 + (-1)^n}{2}$$

so that $x_n = s_n + t_n$. Denote by X and T the sets of the subsequential limits of the sequences (x_n) and (t_n) correspondingly.

Step 1: X = T. Sequence (s_n) converges to 0, therefore by Theorem 11.3, any subsequence of (s_n) converges to 0. If either the subsequence (x_{n_k}) or the subsequence (t_{n_k}) converges, then by Theorem 9.2

(5)
$$\lim x_{n_k} = \lim(t_{n_k} + s_{n_k}) = \lim(x_{n_k} - s_{n_k}) = \lim t_{n_k},$$

and thus X = T.

Step 2: $T = \{0, 1\}$. We have that

(6)
$$t_{2n-1} = 0, \quad t_{2n} = 1,$$

therefore $\{0,1\} \subset T$. If $t \notin \{0,1\}$, then

(7)
$$\forall n \in \mathbb{N} \quad |t_n - t| \ge \min\{|t|, |1 - t|\} > 0,$$

so $t \notin T$.

We conclude that $X = T = \{0, 1\}$. Step 3: $\liminf x_n = 0$, $\limsup x_n = 1$. Follows from Theorem 11.8 (ii).

3. Determine if the following series converge

(a)

$$\sum_{n=2}^{\infty} \frac{3}{\log n}$$

(b)

$$\sum_{n=2}^{\infty} \frac{3^n}{(\log n)^n}$$

 $n < e^n$.

Solution.

(a) By the Important Example 6

(8)
$$\lim \frac{n}{e^n} = 0,$$

therefore there exists $N \in \mathbb{N}$ such that for any n > N

Function $x \mapsto \log x$ is increasing, so for any n > N

(10)
$$\log n < n \quad \left(\Leftrightarrow \quad \frac{1}{\log n} > \frac{1}{n} \right)$$

Since

(11)
$$\sum \frac{1}{n} = +\infty$$

by the comparison test (Theorem 14.6 (ii)) we have that

(12)
$$\sum \frac{3}{\log n} = +\infty.$$

(b) In order to establish the convergence of the series, use the root test (Theorem 14.9)

(13)
$$\lim \sqrt[n]{\frac{3^n}{\log^n n}} = \lim \frac{3}{\log n} = 0.$$

This implies that the series $\sum \frac{3^n}{\log^n n}$ converges.

4. Prove that the function

$$f(x) = 2^{\frac{1}{1+x^2}}$$

is continuous on \mathbb{R} .

Solution. Step 1: Function $x \mapsto \frac{1}{1+x^2}$ is continuous on \mathbb{R} . By Theorems 17.4, $g(x) = 1 + x^2$ is continuous on \mathbb{R} . Since $g(x) \ge 1$ for all $x \in \mathbb{R}$, by Theorem 17.4, 1/g is continuous of \mathbb{R} .

Step 2: Function $x \mapsto 2^x$ is continuous on \mathbb{R} . As stated in Lecture 16 (and proven in the Important Example 11).

Step 3: f is continuous on \mathbb{R} . Follows from Steps 1, 2 and Theorem 17.5 about the continuity of a composition of continuous functions.

5. Let $S \subset \mathbb{R}$ and let $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ be uniformly continuous on S. Prove that f + g is uniformly continuous on S.

Solution. Fix $\varepsilon > 0$. From the definition of the uniform continuity, for any $\varepsilon > 0$ there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that

(14)
$$|x-y| < \delta_1 \quad \Rightarrow \quad |f(x) - f(y)| < \frac{\varepsilon}{2},$$

(15)
$$|x-y| < \delta_2 \Rightarrow |g(x)-g(y)| < \frac{\varepsilon}{2}.$$

Take $\delta = \min{\{\delta_1, \delta_2\}}$. Then for all $x, y \in \mathbb{R}$ such that $|x - y| < \delta$ by using the triangle inequality we have

(16)
$$|f(x) + g(x) - (f(y) - g(y))| = |f(x) - f(y) + g(x) - g(y)|$$
(17)
$$\leq |f(x) - f(y)| + |g(x) - g(y)|$$

(17)
$$\leq |f(x) - f(y)| + |g(x) - g(y)|$$

(18) $< \varepsilon$.

This means that

(19)
$$|x-y| < \delta \quad \Rightarrow \quad |(f+g)(x) - (f+g)(y)| < \varepsilon,$$

function f + g is uniformly continuous on \mathbb{R} .