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1. Let (sn) be a monotonic sequence and let (snk
) be its subsequence. Prove that if the

subsequence (snk
) is a Cauchy sequence, then (sn) converges.

Solution.
Step 1: (snk

) is bounded. The sequence (snk
) is a Cauchy sequence. By Lemma 10.10 (snk

)
is bounded This means that there exists a number M > 0 such that |snk

| ≤M for all k ∈ N.
Step 2: (sn) is bounded. By the definition of a subsequence, k ≤ nk for any k ∈ N. If (sn)

is increasing, then for all k ∈ N

(1) k ≤ nk ⇒ sk ≤ snk
≤M,

and thus (sn) is bounded above. If (sn) is decreasing, then for all k ∈ N

(2) k ≤ nk ⇒ sk ≥ snk
≥ −M,

and thus (sn) is bounded below.
Step 3: (sn) converges. Sequence (sn) is monotonic and bounded, therefore by Theo-

rem 10.2 (sn) converges.

2. Determine the set of the partial limits, lim inf and lim sup of the sequence (xn) given by

(3) xn =
(−1)n

n
+

1 + (−1)n

2
.

Remark. Partial limit is another term used to describe the subsequential limit.

Solution. Denote

(4) sn =
(−1)n

n
, tn =

1 + (−1)n

2
,

so that xn = sn+tn. Denote by X and T the sets of the subsequential limits of the sequences
(xn) and (tn) correspondingly.

Step 1: X = T . Sequence (sn) converges to 0, therefore by Theorem 11.3, any subsequence
of (sn) converges to 0. If either the subsequence (xnk

) or the subsequence (tnk
) converges,

then by Theorem 9.2

(5) limxnk
= lim(tnk

+ snk
) = lim(xnk

− snk
) = lim tnk

,

and thus X = T .
Step 2: T = {0, 1}. We have that

(6) t2n−1 = 0, t2n = 1,

therefore {0, 1} ⊂ T . If t /∈ {0, 1}, then

(7) ∀n ∈ N |tn − t| ≥ min{|t|, |1− t|} > 0,

so t /∈ T .
We conclude that X = T = {0, 1}.
Step 3: lim inf xn = 0, lim supxn = 1. Follows from Theorem 11.8 (ii).

3. Determine if the following series converge
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(a)
∞∑
n=2

3

log n

(b)
∞∑
n=2

3n

(log n)n

Solution.

(a) By the Important Example 6

(8) lim
n

en
= 0,

therefore there exists N ∈ N such that for any n > N

(9) n < en.

Function x 7→ log x is increasing, so for any n > N

(10) log n < n

(
⇔ 1

log n
>

1

n

)
.

Since

(11)
∑ 1

n
= +∞

by the comparison test (Theorem 14.6 (ii)) we have that

(12)
∑ 3

log n
= +∞.

(b) In order to establish the convergence of the series, use the root test (Theorem 14.9)

(13) lim n

√
3n

logn n
= lim

3

log n
= 0.

This implies that the series
∑

3n

logn n
converges.

4. Prove that the function
f(x) = 2

1
1+x2

is continuous on R.

Solution. Step 1: Function x 7→ 1
1+x2 is continuous on R. By Theorems 17.4, g(x) =

1 + x2 is continuous on R. Since g(x) ≥ 1 for all x ∈ R, by Theorem 17.4, 1/g is continuous
of R.

Step 2: Function x 7→ 2x is continuous on R. As stated in Lecture 16 (and proven in the
Important Example 11).

Step 3: f is continuous on R. Follows from Steps 1, 2 and Theorem 17.5 about the
continuity of a composition of continuous functions.

5. Let S ⊂ R and let f : S → R and g : S → R be uniformly continuous on S. Prove that
f + g is uniformly continuous on S.
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Solution. Fix ε > 0. From the definition of the uniform continuity, for any ε > 0 there
exist δ1 > 0 and δ2 > 0 such that

(14) |x− y| < δ1 ⇒ |f(x)− f(y)| < ε

2
,

(15) |x− y| < δ2 ⇒ |g(x)− g(y)| < ε

2
.

Take δ = min{δ1, δ2}. Then for all x, y ∈ R such that |x − y| < δ by using the triangle
inequality we have

|f(x) + g(x)− (f(y)− g(y))| = |f(x)− f(y) + g(x)− g(y)|(16)

≤ |f(x)− f(y)|+ |g(x)− g(y)|(17)

< ε.(18)

This means that

(19) |x− y| < δ ⇒ |(f + g)(x)− (f + g)(y)| < ε,

function f + g is uniformly continuous on R.


