MATH 142A: Introduction to Analysis

www.math.ucsd.edu/~ynemish/teaching/142a

Today: Set of real numbers and completeness axiom
 $>$ Q\&A: January 11

Next: Ross § 7

Week 2:

- Quiz 1 (Wednesday, January 13) - Lectures 1-2
- homework 1 (due Friday, January 15)

Maximum and minimum
Let \mathbb{F} be an ordered field and let $S \subset \mathbb{F}, S \neq \varnothing$
Def

Examples 1. Any finite nonempty subset of \mathbb{F} has max and min
2. For $\mathbb{F}=\mathbb{R}$ and $a<b$, denote

$$
\begin{array}{ll}
{[a, b]:=} & (a, b):= \\
{[a, b):=} & (a, b]:=
\end{array}
$$

(a) $\max [a, b]=\max (a, b]=\quad \min [a, b]=\min [a, b)=$

Maximum and minimum
(b) $\max [a, b), \max (a, b), \min (a, b], \min (a, b)$ do not exist
3. Recall $\max [0, \sqrt{2}]=\max \{x \in \mathbb{R}: 0 \leqslant x \leqslant \sqrt{2}\}=$

But $\max \{q \in \mathbb{Q}: 0 \leq q \leq \sqrt{2}\}$

Upper /lower bound
Let \mathbb{F} be an ordered field and let $S \subset \mathbb{F}, S \neq \varnothing$
Def If , then M is called an of S and S is called bounded above If. then m is called a
of S and S is called bounded below
S is called , if it is bounded above and bounded below
Examples 1. Intervals $[a, b],[a, b),(a, b],(a, b)$ are bounded: any $m \leqslant a$ is a lower bound, any $M \geqslant b$ is an upper bound for these sets.
2. If $S_{0}=\max S$, then any $M \geq S_{0}$ is an upper bound for S.
3. Sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are not bounded above.

Supremum and infimum
Let \mathbb{F} be an ordered field and let $S \subset \mathbb{F}, S \neq \phi$
Def If S is bounded above and S has a then we call it the of S,

If S is bounded below and S has a then we call it the of S_{1}

Examples 1. If max exists, then (similarly inf)
2. $\sup [a, b]=\sup [a, b)=\sup (a, b]=\sup (a, b)=b \quad($ similarly for inf)

Completeness axiom
3. (a) $\mathbb{F}=\mathbb{R} \quad \max [0, \sqrt{2}]=\max \{x \in \mathbb{R}: 0 \leq x \leq \sqrt{2}\}=$

$$
\sup [0, \sqrt{2}]=\sup \{x \in \mathbb{R}: 0 \leq x \leq \sqrt{2}\}=
$$

(b) $\mathbb{F}=\mathbb{R} \quad \max \{x \in \mathbb{Q}: 0 \leq x \leq \sqrt{2}\}$

$$
\sup \{x \in \mathbb{Q}: 0 \leq x \leq \sqrt{2}\}=
$$

(c) $\mathbb{F}=\mathbb{Q} \quad \max \{x \in \mathbb{Q}: 0 \leq x \in \sqrt{2}\}$
$\sup \{x \in \mathbb{Q}: 0 \leq x \in \sqrt{2}\}$
Completeness Axiom
Every nonemply subset Sof \mathbb{R} that is bounded above has a least upper bound, i.e., sup S exists and is a real number.

Satisfied by \mathbb{R} (by definition), not satisfied by \mathbb{Q}.

Corollary 4.5
Let $S \subset \mathbb{R}$.
Proof

Denote $-S=\{-s ; s \in S\}$.
(1): S bounded below \Rightarrow
(2):
(3):

Archimedean Property

- $\forall a>0 \quad \exists n \in \mathbb{N}$ s.t. $\frac{1}{n}<a$
- $\forall b>0 \quad \exists n \in \mathbb{N}$ s.t $n>b$

Thm 4.6 (Archimedean Property)

$$
\forall a>0, b>0 \quad \exists n \in \mathbb{N} \text { s.t. }
$$

Proof: (by contradiction) Suppose AP is not true.
(1) $S:=\{a n: n \in \mathbb{N}\}$
(2)

Denseness of \mathbb{Q}
The 4.7 (Denseness of \mathbb{Q})

$$
(a, b \in \mathbb{R}) \wedge(a<b) \Rightarrow \exists q \in \mathbb{Q}(q \in(a, b))
$$

Proof: Enough to show that $\exists m \in \mathbb{Z}, n \in \mathbb{N}$ s.t.

$$
a<\frac{m}{n}<b \Leftrightarrow a n<m<b n
$$

(1)

How to show that $\exists m \in \mathbb{Z}$ s.t. $a n_{0}<m<b n_{0}$?
Choose the smallest integer greater than and.
(2)

$$
\begin{aligned}
n_{0} \max \{|a|,|b|\}>0 & \stackrel{A P}{\Rightarrow} \exists k \text { s.t. } k \geq n_{0} \max \{|a|,|b|\} \\
& \Rightarrow-k \leq n_{0} a \leq n_{0} b \leq k
\end{aligned}
$$

(3) $k:=\left\{j \in \mathbb{N}:-k \leq j \leq k, j>a n_{0}\right\}, k$ finite and $k \neq \varnothing \Rightarrow \exists \min k=: m$
(4) $m=\min K \Rightarrow m-1 \leq a n_{0} \Rightarrow m \leq a n_{0}+1<n_{0} b \Rightarrow n_{0} a<m<n_{0} b$.

