Math 281C Homework 8 Solutions

1. Let X_{1}, \ldots, X_{n} be i.i.d. random variables from the beta distribution with $\operatorname{pdf} \theta x^{\theta-1} \mathbb{1}(0<x<1)$, and independent of X_{i} 's, let Y_{1}, \ldots, Y_{m} be i.i.d. from the beta distribution with pdf $\mu x^{\mu-1} \mathbb{1}(0<x<1)$. For testing $H_{0}: \theta=\mu$ versus $H_{1}: \theta \neq \mu$, find the forms of the LR test, Wald's test, and Rao's score test.
Solution: The log-likelihood function (omitting the indicator) is

$$
\log \ell(\theta, \mu)=n \log \theta+m \log \mu+(\theta-1) \sum_{i=1}^{n} \log x_{i}+(\mu-1) \sum_{i=1}^{m} \log y_{i}
$$

The restricted MLEs are $\widetilde{\theta}=\widetilde{\mu}=-(m+n) /\left(\sum_{i=1}^{n} \log x_{i}+\sum_{i=1}^{m} \log y_{i}\right)$, and the unrestricted MLEs are $\widehat{\theta}=-n /\left(\sum_{i=1}^{n} \log x_{i}\right), \widehat{\mu}=-m /\left(\sum_{i=1}^{m} \log y_{i}\right)$.
$\underline{\text { LR test: }}$

$$
\lambda_{m, n}(\boldsymbol{x}, \boldsymbol{y})=(\widetilde{\theta} / \widehat{\theta})^{n}(\widetilde{\mu} / \widehat{\mu})^{m}\left(\prod_{i=1}^{n} x_{i}\right)^{\widetilde{\theta}-\widehat{\theta}}\left(\prod_{i=1}^{m} y_{i}\right)^{\widetilde{\mu}-\widehat{\mu}}
$$

and we reject H_{0} if $\lambda_{m, n}(\boldsymbol{x}, \boldsymbol{y})<C$.
Wald's test: $R(\theta, \mu)=\theta-\mu$, and $R^{\prime}(\theta, \mu)=(1,-1)^{\top}$. The Fisher information is $I_{m, n}(\theta, \mu)=\operatorname{diag}\left(n / \theta^{2}, m / \mu^{2}\right)$.

$$
W_{m, n}(\boldsymbol{x}, \boldsymbol{y})=\frac{(\widehat{\theta}-\widehat{\mu})^{2}}{\widehat{\theta}^{2} / n+\widehat{\mu}^{2} / m}
$$

We reject H_{0} if $W_{m, n}(\boldsymbol{x}, \boldsymbol{y})>C$.
Rao's score test: $g(\theta)=(\theta, \theta)^{\top}$. We omit the computational details of score function.

$$
R_{m, n}(\boldsymbol{x}, \boldsymbol{y})=\frac{\widetilde{\theta}^{2}}{n}\left(n / \widetilde{\theta}+\sum_{i=1}^{n} \log x_{i}\right)^{2}+\frac{\widetilde{\theta}^{2}}{m}\left(m / \widetilde{\theta}+\sum_{i=1}^{m} \log y_{i}\right)^{2}
$$

H_{0} is rejected if $R_{m, n}(\boldsymbol{x}, \boldsymbol{y})>C$.
2. Suppose that $X=\left(X_{1}, \ldots, X_{k}\right)^{T}$ has the multinomial distribution with a known size n and an unknown probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)^{T}$. Consider the problem of testing

$$
H_{0}: \mathbf{p}=\mathbf{p}_{0} \quad \text { versus } H_{1}: \mathbf{p} \neq \mathbf{p}_{0}
$$

where $\mathbf{p}_{0}=\left(p_{01}, \ldots, p_{0 k}\right)^{T}$ is a known probability vector, that is, $\sum_{j=1}^{k} p_{0 j}=1$ and $p_{0 j} \in(0,1)$. Find the forms of Wald's test and Rao's score test.
Solution: Denote $\boldsymbol{\theta}=\left(p_{1}, \ldots, p_{k-1}\right)^{\top}$, it can be calculated that

$$
\begin{aligned}
& \log \ell(\boldsymbol{\theta})=\sum_{i=1}^{k-1} x_{i} \log p_{i}+\left(n-\sum_{i=1}^{k-1} x_{i}\right) \log \left(1-\sum_{i=1}^{k-1} p_{i}\right) \\
& \nabla \log \ell(\boldsymbol{\theta})_{i}=\frac{x_{i}}{p_{i}}-\frac{x_{k}}{1-\sum_{i=1}^{k-1} p_{i}}, \text { for } i \in\{1,2, \ldots, k-1\}, \\
& \nabla^{2} \log \ell(\boldsymbol{\theta})_{i i}=-\frac{x_{i}}{p_{i}^{2}}-\frac{x_{k}}{\left(1-\sum_{i=1}^{k-1} p_{i}\right)^{2}}, \text { for } i \in\{1,2, \ldots, k-1\}, \\
& \nabla^{2} \log \ell(\boldsymbol{\theta})_{i j}=-\frac{x_{k}}{\left(1-\sum_{i=1}^{k-1} p_{i}\right)^{2}}, \text { for } i \neq j \in\{1,2, \ldots, k-1\}
\end{aligned}
$$

Therefore,

$$
\widehat{p}_{i}=\frac{x_{i}}{n}, \text { for } i \in\{1,2, \ldots, k-1\}
$$

and

$$
\begin{aligned}
& {[n I(\boldsymbol{\theta})]_{i i}=\frac{n}{p_{i}}+\frac{n}{\left(1-\sum_{i=1}^{k-1} p_{i}\right)}, \text { for } i \in\{1,2, \ldots, k-1\}} \\
& {[n I(\boldsymbol{\theta})]_{i j}=\frac{n}{\left(1-\sum_{i=1}^{k-1} p_{i}\right)}, \text { for } i \neq j \in\{1,2, \ldots, k-1\}}
\end{aligned}
$$

For Wald's test, the test statistic is

$$
W_{n}=\sum_{i=1}^{k} \frac{\left(x_{i}-n p_{0 i}\right)^{2}}{x_{i}}
$$

For Rao's score test, recall the Sherman-Morrison formula

$$
\left(A+u v^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{\top} A^{-1}}{1+v^{\top} A^{-1} u}
$$

With this formula, we can derive the expression of $[n I(\boldsymbol{\theta})]^{-1}$,

$$
\begin{aligned}
& {[n I(\boldsymbol{\theta})]_{i i}^{-1}=\frac{p_{i}-p_{i}^{2}}{n}, \text { for } i \in\{1,2, \ldots, k-1\}} \\
& {[n I(\boldsymbol{\theta})]_{i j}^{-1}=\frac{p_{i} p_{j}}{n}, \text { for } i \neq j \in\{1,2, \ldots, k-1\}}
\end{aligned}
$$

Therefore, the test statistics is

$$
R_{n}=\sum_{i=1}^{k} \frac{\left(x_{i}-n p_{0 i}\right)^{2}}{n p_{0 i}}
$$

3. Suppose that X_{1}, \ldots, X_{n} are iid from the $\operatorname{Beta}(\mu, 1)$ distribution, and Y_{1}, \ldots, Y_{m} are iid from the $\operatorname{Beta}(\theta, 1)$ distribution. Assume that X_{i} 's and Y_{j} 's are independent.
(i) Find the LRT for testing $H_{0}: \theta=\mu$ versus $H_{1}: \theta \neq \mu$.

Solution: Following Question 1,

$$
\lambda_{m, n}(\boldsymbol{x}, \boldsymbol{y})=(\widetilde{\theta} / \widehat{\theta})^{n}(\widetilde{\mu} / \widehat{\mu})^{m}\left(\prod_{i=1}^{n} x_{i}\right)^{\widetilde{\theta}-\widehat{\theta}}\left(\prod_{i=1}^{m} y_{i}\right)^{\widetilde{\mu}-\widehat{\mu}}
$$

and we reject H_{0} if $\lambda_{m, n}(\boldsymbol{x}, \boldsymbol{y})<C$.
(ii) Show that the test in part (i) can be based on the statistic

$$
T=\frac{\sum_{i=1}^{n} \log X_{i}}{\sum_{i=1}^{n} \log X_{i}+\sum_{j=1}^{m} \log Y_{j}}
$$

Solution: The claimed result can be found by taking logarithm of $\lambda_{m, n}(\boldsymbol{x}, \boldsymbol{y})$.
(iii) Find the distribution of T when H_{0} is true, and show how to get a test of size $\alpha=0.1$.

Solution: By a density transformation, $-\log X_{i}$ and $-\log Y_{i}$ follow $\exp (\theta)$, so $-\sum_{i=1}^{n} \log X_{i} \sim$ $\operatorname{Gamma}(n, \theta),-\sum_{j=1}^{m} \log Y_{j} \sim \operatorname{Gamma}(m, \theta)$, and hence, $T \sim \operatorname{Beta}(n, m)$. We reject H_{0} if $T<C_{1}$ or $T>C_{2}$, where C_{1}, C_{2} satisfy

$$
C_{1}^{n}\left(1-C_{1}\right)^{m}=C_{2}^{n}\left(1-C_{2}\right)^{m}, \quad \int_{C_{1}}^{C_{2}} \frac{\Gamma(m+n)}{\Gamma(m)+\Gamma(n)} x^{n-1}(1-x)^{m-1} \mathrm{~d} x=1-\alpha
$$

4. The following example comes from genetics. There is a particular characteristic of human blood (the so-called MN blood group) that has three types: M, MN, and N. Under idealized circumstances known as Hardy-Weinberg equilibrium, these three types occur in the population with probabilities $p_{1}=\pi_{M}^{2}$, $p_{2}=2 \pi_{M} \pi_{N}$ and $p_{3}=\pi_{N}^{2}$, respectively, where π_{M} is the frequency of the M allele in the population and $\pi_{N}=1-\pi_{M}$ is the frequency of the N allele.
We observe data X_{1}, \ldots, X_{n}, where X_{i} has one the three possible values: $(1,0,0)^{T},(0,1,0)^{T}$, or $(0,0,1)^{T}$, depending on whether the i th individual has the M, MN, or N blood type. Denote the total number of individuals of each of the three types by n_{1}, n_{2}, and n_{3}; that is, $n_{j}=n \bar{X}_{j}$ for each j.
If the value of π_{M} were known, then we already know that the Pearson χ^{2} statistic converges in distribution to a chi-square distribution with 2 degrees of freedom. However, in practice we usually don't know π_{M}. Instead, we estimate it using the maximum likelihood estimator $\widehat{\pi}_{M}=\left(2 n_{1}+n_{2}\right) /(2 n)$. By the invariance principle of maximum likelihood estimation, this gives $\widehat{p}=\left(\widehat{\pi}_{M}^{2}, 2 \widehat{\pi}_{M} \widehat{\pi}_{N}, \widehat{\pi}_{N}^{2}\right)^{T}$ as the maximum likelihood estimator of $p=\left(p_{1}, p_{2}, p_{3}\right)^{T}$.
(a) Define $Z_{n}=\sqrt{n}(\bar{X}-\widehat{p})$. Use the delta method to derive the asymptotic distribution of $D^{-1 / 2} Z_{n}$, where $D=\operatorname{diag}\left(p_{1}, p_{2}, p_{3}\right)$.

Solution: Denote $T=\left(T_{1}, T_{2}, T_{3}\right):=\left(n_{1} / n, n_{2} / n, n_{3} / n\right)$. We know that

$$
\sqrt{n}(T-p) \xrightarrow{d} N(0, \Sigma),
$$

where $\Sigma_{i i}=p_{i}\left(1-p_{i}\right)$ and $\Sigma_{i j}=-p_{i} p_{j}$ for $i \neq j$. It can be computed that

$$
(T-\widehat{p})^{\top}=\left(T_{1} T_{3}-T_{2}^{2} / 4, T_{2}^{2} / 2-2 T_{1} T_{3}, T_{1} T_{3}-T_{2}^{2} / 4\right)
$$

Define $\phi(\boldsymbol{x}): \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ as $\phi\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{1} x_{3}-x_{2}^{2} / 4, x_{2}^{2} / 2-2 x_{1} x_{3}, x_{1} x_{3}-x_{2}^{2} / 4\right)^{\top}$, we have $\phi(p)=0$, and applying Delta method gives us

$$
\sqrt{n}(T-\widehat{p})=\sqrt{n}(\phi(T)-\phi(p)) \xrightarrow{d} N\left(0, \nabla \phi \cdot \Sigma \cdot \nabla \phi^{\top}\right),
$$

where $\nabla \phi=\boldsymbol{u} \cdot\left(p_{3},-p_{2} / 2, p_{1}\right)$ with $\boldsymbol{u}=(1,-2,1)^{\top}$. Consequently,

$$
D^{-1 / 2} \sqrt{n}(T-\widehat{p}) \xrightarrow{d} N\left(0, D^{-1 / 2} \nabla \phi \cdot \Sigma \cdot \nabla \phi^{\top} D^{-1 / 2}\right),
$$

and it can be verified (with burdensome computation) that

$$
D^{-1 / 2} \nabla \phi \cdot \Sigma \cdot \nabla \phi^{\top} D^{-1 / 2}=\left(p_{2}^{2} / 4\right) \cdot D^{-1 / 2} \boldsymbol{u} \boldsymbol{u}^{\top} D^{-1 / 2}
$$

(b) Define \widehat{D} to be the diagonal matrix with entries $\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3}$ along its diagonal. Derive the asymptotic distribution of $\widehat{D}^{-1 / 2} Z_{n}$.

Solution: Since

$$
\widehat{D}^{-1 / 2} Z_{n}=\left(\widehat{D}^{-1 / 2}-D^{-1 / 2}\right) Z_{n}+D^{-1 / 2} Z_{n} .
$$

A random matrix converges in probability if and only if every element converges in probability, so $\widehat{D}^{-1 / 2} \xrightarrow{p} D^{-1 / 2}$. Combining Slutsky's theorem and part (a) gives us

$$
\widehat{D}^{-1 / 2} Z_{n} \xrightarrow{d} N\left(0,\left(p_{2}^{2} / 4\right) \cdot D^{-1 / 2} \boldsymbol{u} \boldsymbol{u}^{\top} D^{-1 / 2}\right) .
$$

(c) Derive the asymptotic distribution of the Pearson chi-square statistic

$$
\chi^{2}=\sum_{j=1}^{n} \frac{\left(n_{j}-n \widehat{p}_{j}\right)^{2}}{n \widehat{p}_{j}} .
$$

Solution: The χ^{2} statistic defined above can be written as $\chi^{2}=\left\|\widehat{D}^{-1 / 2} Z_{n}\right\|_{2}^{2}$. Intuitively, the asymptotic covariance matrix in part (b) is rank-one, and the only non-zero eigenvalue is 1 , so $\chi^{2} \xrightarrow{d} \chi_{1}^{2}$. To prove this, denote $\boldsymbol{v}:=\left(p_{2} / 2\right) \cdot D^{-1 / 2} \boldsymbol{u}$, then the asymptotic covariance of $\widehat{D}^{-1 / 2} Z_{n}$ can be written as $\boldsymbol{v} \boldsymbol{v}^{\top}$. Equivalently, $\widehat{D}^{-1 / 2} Z_{n} \xrightarrow{d} \boldsymbol{v} Z$, where $Z \sim N(0,1)$, and

$$
\left\|\widehat{D}^{-1 / 2} Z_{n}\right\|_{2}^{2} \xrightarrow{d} Z \boldsymbol{v}^{\top} \boldsymbol{v} Z=Z^{2} \sim \chi_{1}^{2}
$$

