Math 281C Homework 8 (Last)

Due: 5:00pm, June 3rd

1. Let X_{1}, \ldots, X_{n} be i.i.d. random variables from the beta distribution with pdf $\theta x^{\theta-1} \mathbb{1}(0<x<1)$, and independent of X_{i} 's, let Y_{1}, \ldots, Y_{m} be i.i.d. from the beta distribution with pdf $\mu x^{\mu-1} \mathbb{1}(0<x<1)$. For testing $H_{0}: \theta=\mu$ versus $H_{1}: \theta \neq \mu$, find the forms of the LR test, Wald's test, and Rao's score test.
2. Suppose that $X=\left(X_{1}, \ldots, X_{k}\right)^{T}$ has the multinomial distribution with a known size n and an unknown probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)^{T}$. Consider the problem of testing

$$
H_{0}: \mathbf{p}=\mathbf{p}_{0} \quad \text { versus } H_{1}: \mathbf{p} \neq \mathbf{p}_{0}
$$

where $\mathbf{p}_{0}=\left(p_{01}, \ldots, p_{0 k}\right)^{T}$ is a known probability vector, that is, $\sum_{j=1}^{k} p_{0 j}=1$ and $p_{0 j} \in(0,1)$. Find the forms of Wald's test and Rao's score test.
3. Suppose that X_{1}, \ldots, X_{n} are iid from the $\operatorname{Beta}(\mu, 1)$ distribution, and Y_{1}, \ldots, Y_{m} are iid from the $\operatorname{Beta}(\theta, 1)$ distribution. Assume that X_{i} 's and Y_{j} 's are independent.
(i) Find the LRT for testing $H_{0}: \theta=\mu$ versus $H_{1}: \theta \neq \mu$.
(ii) Show that the test in part (i) can be based on the statistic

$$
T=\frac{\sum_{i=1}^{n} \log X_{i}}{\sum_{i=1}^{n} \log X_{i}+\sum_{j=1}^{m} \log Y_{j}}
$$

(iii) Find the distribution of T when H_{0} is true, and show how to get a test of size $\alpha=0.1$.
4. The following example comes from genetics. There is a particular characteristic of human blood (the so-called MN blood group) that has three types: M, MN, and N. Under idealized circumstances known as Hardy-Weinberg equilibrium, these three types occur in the population with probabilities $p_{1}=\pi_{M}^{2}$, $p_{2}=2 \pi_{M} \pi_{N}$ and $p_{3}=\pi_{N}^{2}$, respectively, where π_{M} is the frequency of the M allele in the population and $\pi_{N}=1-\pi_{M}$ is the frequency of the N allele.
We observe data X_{1}, \ldots, X_{n}, where X_{i} has one the three possible values: $(1,0,0)^{T},(0,1,0)^{T}$, or $(0,0,1)^{T}$, depending on whether the i th individual has the M , MN, or N blood type. Denote the total number of individuals of each of the three types by n_{1}, n_{2}, and n_{3}; that is, $n_{j}=n \bar{X}_{j}$ for each j.
If the value of π_{M} were known, then we already know that the Pearson χ^{2} statistic converges in distribution to a chi-square distribution with 2 degrees of freedom. However, in practice we usually don't know π_{M}. Instead, we estimate it using the maximum likelihood estimator $\widehat{\pi}_{M}=\left(2 n_{1}+n_{2}\right) /(2 n)$. By the invariance principle of maximum likelihood estimation, this gives $\widehat{p}=\left(\widehat{\pi}_{M}^{2}, 2 \widehat{\pi}_{M} \widehat{\pi}_{N}, \widehat{\pi}_{N}^{2}\right)^{T}$ as the maximum likelihood estimator of $p=\left(p_{1}, p_{2}, p_{3}\right)^{T}$.
(a) Define $Z_{n}=\sqrt{n}(\bar{X}-\widehat{p})$. Use the delta method to derive the asymptotic distribution of $D^{-1 / 2} Z_{n}$, where $D=\operatorname{diag}\left(p_{1}, p_{2}, p_{3}\right)$.
(b) Define \widehat{D} to be the diagonal matrix with entries $\widehat{p}_{1}, \widehat{p_{2}}, \widehat{p}_{3}$ along its diagonal. Derive the asymptotic distribution of $\widehat{D}^{-1 / 2} Z_{n}$.
(c) Derive the asymptotic distribution of the Pearson chi-square statistic

$$
\chi^{2}=\sum_{j=1}^{n} \frac{\left(n_{j}-n \widehat{p}_{j}\right)^{2}}{n \widehat{p}_{j}}
$$

