Math 281C Homework 8 (Last)

Due: 5:00pm, June 3rd

- 1. Let X_1, \ldots, X_n be i.i.d. random variables from the beta distribution with pdf $\theta x^{\theta-1} \mathbb{1}(0 < x < 1)$, and independent of X_i 's, let Y_1, \ldots, Y_m be i.i.d. from the beta distribution with pdf $\mu x^{\mu-1} \mathbb{1}(0 < x < 1)$. For testing $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$, find the forms of the LR test, Wald's test, and Rao's score test.
- 2. Suppose that $X = (X_1, \ldots, X_k)^T$ has the multinomial distribution with a known size n and an unknown probability vector $\mathbf{p} = (p_1, \ldots, p_k)^T$. Consider the problem of testing

$$H_0: \mathbf{p} = \mathbf{p}_0$$
 versus $H_1: \mathbf{p} \neq \mathbf{p}_0$,

where $\mathbf{p}_0 = (p_{01}, \dots, p_{0k})^T$ is a known probability vector, that is, $\sum_{j=1}^k p_{0j} = 1$ and $p_{0j} \in (0, 1)$. Find the forms of Wald's test and Rao's score test.

- 3. Suppose that X_1, \ldots, X_n are iid from the Beta $(\mu, 1)$ distribution, and Y_1, \ldots, Y_m are iid from the Beta $(\theta, 1)$ distribution. Assume that X_i 's and Y_j 's are independent.
 - (i) Find the LRT for testing $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (ii) Show that the test in part (i) can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} \log X_i}{\sum_{i=1}^{n} \log X_i + \sum_{j=1}^{m} \log Y_j}$$

- (iii) Find the distribution of T when H_0 is true, and show how to get a test of size $\alpha = 0.1$.
- 4. The following example comes from genetics. There is a particular characteristic of human blood (the so-called MN blood group) that has three types: M, MN, and N. Under idealized circumstances known as Hardy-Weinberg equilibrium, these three types occur in the population with probabilities $p_1 = \pi_M^2$, $p_2 = 2\pi_M \pi_N$ and $p_3 = \pi_N^2$, respectively, where π_M is the frequency of the M allele in the population and $\pi_N = 1 \pi_M$ is the frequency of the N allele.

We observe data X_1, \ldots, X_n , where X_i has one the three possible values: $(1,0,0)^T$, $(0,1,0)^T$, or $(0,0,1)^T$, depending on whether the *i*th individual has the M, MN, or N blood type. Denote the total number of individuals of each of the three types by n_1 , n_2 , and n_3 ; that is, $n_j = n\bar{X}_j$ for each *j*. If the value of π_M were known, then we already know that the Pearson χ^2 statistic converges in

If the value of π_M were known, then we already know that the Pearson χ^2 statistic converges in distribution to a chi-square distribution with 2 degrees of freedom. However, in practice we usually don't know π_M . Instead, we estimate it using the maximum likelihood estimator $\hat{\pi}_M = (2n_1 + n_2)/(2n)$. By the invariance principle of maximum likelihood estimation, this gives $\hat{p} = (\hat{\pi}_M^2, 2\hat{\pi}_M\hat{\pi}_N, \hat{\pi}_N^2)^T$ as the maximum likelihood estimator of $p = (p_1, p_2, p_3)^T$.

- (a) Define $Z_n = \sqrt{n}(\bar{X} \hat{p})$. Use the delta method to derive the asymptotic distribution of $D^{-1/2}Z_n$, where $D = \text{diag}(p_1, p_2, p_3)$.
- (b) Define \widehat{D} to be the diagonal matrix with entries $\widehat{p}_1, \widehat{p}_2, \widehat{p}_3$ along its diagonal. Derive the asymptotic distribution of $\widehat{D}^{-1/2}Z_n$.
- (c) Derive the asymptotic distribution of the Pearson chi-square statistic

$$\chi^2 = \sum_{j=1}^n \frac{(n_j - n\widehat{p}_j)^2}{n\widehat{p}_j}.$$