Math 281C Homework 6 Solutions

1. Find the LRT for testing $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$ based on a single observation from the density function

$$
f(x)=2 \frac{\theta-x}{\theta^{2}} \mathbb{1}(0<x<\theta) .
$$

Solution: Viewing the density as a function of θ and setting $\partial f_{x}(\theta) / \partial \theta=0$ gives us $\widehat{\theta}=2 x$. The LRT statistic is then

$$
\lambda(x)=\frac{\ell\left(\theta_{0}\right)}{\ell(\widehat{\theta})}=4 \frac{\left(\theta_{0}-x\right) x}{\theta_{0}^{2}} \mathbb{1}\left(0<x<\theta_{0}\right)
$$

The LRT rejects H_{0} if $\lambda(x)<C$, which is equivalent to $x<\left(\theta_{0}-\theta_{0} \sqrt{1-C}\right) / 2$ or $x>\left(\theta_{0}+\theta_{0} \sqrt{1-C}\right) / 2$. If the test size is α, then the constant C can be determined by $\mathbb{P}\left\{x<\left(\theta_{0}-\theta_{0} \sqrt{1-C}\right) / 2\right\}+\mathbb{P}\{x>$ $\left.\left(\theta_{0}-\theta_{0} \sqrt{1-C}\right) / 2\right\}=\alpha$.
2. Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be two independent samples with the probability density functions

$$
f_{1}(x)=\frac{1}{\lambda_{1}} e^{-x / \lambda_{1}} \mathbb{1}(x>0) \quad \text { and } \quad f_{2}(y)=\frac{1}{\lambda_{2}} e^{-y / \lambda_{2}} \mathbb{1}(y>0)
$$

respectively. We wish to test $H_{0}: \lambda_{1}=\lambda_{2}$ versus $H_{1}: \lambda_{1} \neq \lambda_{2}$.
(i). Find a UMPU test of size α.

Solution: The joint density is

$$
\begin{aligned}
f(\boldsymbol{x}, \boldsymbol{y}) & =\frac{1}{\lambda_{1}^{m} \lambda_{2}^{n}} \exp \left\{-\frac{\sum_{i=1}^{m} x_{i}}{\lambda_{1}}-\frac{\sum_{i=1}^{n} y_{i}}{\lambda_{2}}\right\} \cdot \mathbb{1}\left(X_{(1)}>0, Y_{(1)}>0\right) \\
& =\frac{1}{\lambda_{1}^{m} \lambda_{2}^{n}} \exp \left\{\left(1 / \lambda_{2}-1 / \lambda_{1}\right) \sum_{i=1}^{m} x_{i}-\left(1 / \lambda_{2}\right)\left(\sum_{i=1}^{m} x_{i}+\sum_{i=1}^{n} y_{i}\right)\right\} \cdot \mathbb{1}\left(X_{(1)}>0, Y_{(1)}>0\right)
\end{aligned}
$$

The following argument is similar to Question 2-(i) in homework 4. Denote $U:=\sum_{i=1}^{m} X_{i}, T:=$ $\sum_{i=1}^{m} x_{i}+\sum_{i=1}^{n} y_{i}$, and define $W=h(U, T):=U / T$. When $\lambda_{1}=\lambda_{2}=\lambda, T$ is sufficient and complete. We then show W is ancillary. Notice that $X_{i} \sim \operatorname{Gamma}(\lambda, 1)$ and $Y_{i} \sim \operatorname{Gamma}(\lambda, 1)$, so $U \sim$ $\operatorname{Gamma}(\lambda, m), T \sim \operatorname{Gamma}(\lambda, m+n)$, and $W \sim \operatorname{Beta}(m, n)$. Hence, the distribution of W does not depend on λ. Applying Basu's Theorem gives us the independence between W and T.
The UMPU test can be obtained by applying Theorem 6.2.1. Notice that $h(u, t)$ is linear in u for each t, so a UMPU test of size α takes the form

$$
\phi(w)= \begin{cases}1 & \text { when } w \leq c_{1} \text { or } w \geq c_{2} \\ 0 & \text { when } c_{1}<w<c_{2}\end{cases}
$$

where c_{1}, c_{2} satisfy $\mathbb{E} \phi(W)=\alpha$ and $\mathbb{E}[W \phi(W)]=\alpha \mathbb{E} W$, where $W \sim \operatorname{Beta}(m, n)$.
(ii). Find an LRT of size α.

Solution: In the null space, $\widehat{\lambda}_{1}=\widehat{\lambda}_{2}=\overline{X+Y}$, and in the whole space, $\widehat{\lambda}_{1}=\bar{X}, \widehat{\lambda}_{2}=\bar{Y}$. The LRT statistic is

$$
\lambda(\boldsymbol{x}, \boldsymbol{y})=\left(\frac{\bar{X}}{\overline{X+Y}}\right)^{m}\left(\frac{\bar{Y}}{\overline{X+Y}}\right)^{n} \cdot \mathbb{1}\left(X_{(1)}>0, Y_{(1)}>0\right) .
$$

The LRT rejects H_{0} if $\lambda(\boldsymbol{x}, \boldsymbol{y})<C$ for some constant C.
(iii). Are the two tests in (i) and (ii) the same?

Solution: Yes. First notice that

$$
\lambda(\boldsymbol{x}, \boldsymbol{y})=\frac{(m+n)^{m+n}}{m^{m} n^{n}} W^{m}(1-W)^{n}
$$

where $W=\sum_{i=1}^{m} X_{i} /\left(\sum_{i=1}^{m} x_{i}+\sum_{i=1}^{n} y_{i}\right)$ is defined in part (i). For any values of $(m, n), f(x)=$ $x^{m}(1-x)^{n}$ is first increasing then decreasing over $x \in(0,1)$, so $\lambda(\boldsymbol{x}, \boldsymbol{y})<C$ is equivalent to $W<c_{3}$ or $W>c_{4}$, and c_{3}, c_{4} satisfy the condition

$$
\begin{equation*}
c_{3}^{m}\left(1-c_{3}\right)^{n}=c_{4}^{m}\left(1-c_{4}\right)^{n} \tag{1}
\end{equation*}
$$

In the following, we show $\left(c_{1}, c_{2}\right)$ also satisfy the above condition, where c_{1}, c_{2} are the constants in part (i).
The constants c_{1}, c_{2} satisfy

$$
\int_{c_{1}}^{c_{2}} \frac{x^{m-1}(1-x)^{n-1}}{B(m, n)} \mathrm{d} x=(1-\alpha) \text { and } \int_{c_{1}}^{c_{2}} \frac{x^{m}(1-x)^{n-1}}{B(m, n)} \mathrm{d} x=(1-\alpha) \frac{m}{m+n} .
$$

Applying integration by parts to the left-hand side, we have

$$
\int_{c_{1}}^{c_{2}} \frac{x^{m}(1-x)^{n-1}}{B(m, n)} \mathrm{d} x=\underbrace{-\left.\frac{1}{n} \frac{x^{m}(1-x)^{n}}{B(m, n)}\right|_{c_{1}} ^{c_{2}}}_{\mathrm{I}}+\underbrace{\frac{m}{n} \int_{c_{1}}^{c_{2}} \frac{x^{m-1}(1-x)^{n}}{B(m, n)} \mathrm{d} x}_{\mathrm{II}} .
$$

In addition,

$$
\begin{aligned}
\mathrm{II} & =\frac{m}{n} \int_{c_{1}}^{c_{2}}(1-x) \frac{x^{m-1}(1-x)^{n-1}}{B(m, n)} \mathrm{d} x \\
& =\frac{m}{n} \underbrace{\int_{c_{1}}^{c_{2}} \frac{x^{m-1}(1-x)^{n-1}}{B(m, n)} \mathrm{d} x}_{1-\alpha}-\frac{m}{n} \underbrace{\int_{c_{1}}^{c_{2}} \frac{x^{m}(1-x)^{n-1}}{B(m, n)} \mathrm{d} x}_{(1-\alpha) \frac{m}{m+n}} \\
& =(1-\alpha) \frac{m}{m+n},
\end{aligned}
$$

which implies $\mathrm{I}=0$. This shows $\left(c_{1}, c_{2}\right)$ satisfy equation (1), and hence proves the equivalence.

