Math 281C Homework 5 Solutions

1. Given independent random variables X7,...,X,,, define
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where S? = (n - 1)1 ¥, (X; - X)2. Show that the following identity holds
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And W and T have a one-to-one correspondence.

Solution: The identity can be proved by a direct computation,
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By Cauchy-Schwarz inequality, ¥, X? > nX?, so [W| < /n, and the one-to-one correspondence
follows from the fact that f(z):=x/\/1 - 22/n is strictly increasing over x € (—/n,/n).

2. Let Uy/of ~ x3,, and Us/o3 ~ X7, and they are independent. Suppose 03/07 = a. Show that U /U,
and alU; + Uy are independent. In particular, if o1 = 09, Us/U; and U; + Uy are independent.

Solution: The density of U; is
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and the density of Uy can be similarly calculated. The joint density of (Uy,Us) is then proportional to
S, vy (u1,un) o< exp{~(auy +us)/(203)},
so al; + Us is sufficient and (boundedly) complete. Then, notice that
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which is independent of o5. Applying Basu’s theorem gives us the desired independence.
3. Suppose that random vector (X,Y") has probability density function
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Does (X,Y') possess a multivariate normal distribution? Find the marginal distributions.

Solution: No. For example, P(X < 0,Y > 0) = 0, but it cannot be zero if (X,Y) possess a bivariate
normal distribution. Marginally, when z > 0,

when z <0,

and fx(0) =0. The marginal distribution of Y is the same.



4. Suppose that X, ~ Binomial(m, p1),Y,, ~ Binomial(n,ps) and they are independent. To test Hy: p1 =
p2 = p for some predetermined p € (0,1), consider the test statistic
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Find the limit distribution of CZ, , as m,n — oo;

Solution: We can write X,,, and Y,, as
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where X; ~ Bernoulli(p;) and ¥; ~ Bernoulli(ps). Under null hypothesis p; = ps = p, we have
Xm - Yn -
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from central limit theorem. This leads us to the conclusion
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How would you modify the test statistic if p were unknown? What is the limit distribution after
modification?

Solution 1: Consider the two-sample proportions test, and the test statistic is
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The limit distribution is A'(0,1).

Solution 2: In the original statistic C2

m,n’

we replace p with its MLE
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By doing this, we add one more restriction so that one degree of freedom is sacrificed, and the
limit distribution becomes x?.
In fact, the above two tests are equivalent.



