Math 281C Homework 5

Due: 5:00pm, May 6th

1. Given independent random variables X_{1}, \ldots, X_{n}, define

$$
W=\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}=\frac{n^{1 / 2} \bar{X}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2} / n}}, \quad T=\frac{n^{1 / 2} \bar{X}}{S}
$$

where $S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Show that the following identity holds

$$
T=\left(\frac{n-1}{n}\right)^{1 / 2} \frac{W}{\sqrt{1-W^{2} / n}}
$$

And W and T have a one-to-one correspondence.
2. Let $U_{1} / \sigma_{1}^{2} \sim \chi_{d_{1}}^{2}$, and $U_{2} / \sigma_{2}^{2} \sim \chi_{d_{2}}^{2}$, and they are independent. Suppose $\sigma_{2}^{2} / \sigma_{1}^{2}=a$. Show that U_{2} / U_{1} and $a U_{1}+U_{2}$ are independent. In particular, if $\sigma_{1}=\sigma_{2}, U_{2} / U_{1}$ and $U_{1}+U_{2}$ are independent.
3. Suppose that random vector (X, Y) has probability density function

$$
\frac{1}{\pi} e^{-\frac{x^{2}+y^{2}}{2}} \mathbb{1}(x y>0), \quad x, y \in \mathbb{R} .
$$

Does (X, Y) possess a multivariate normal distribution? Find the marginal distributions.
4. Suppose that $X_{m} \sim \operatorname{Binomial}\left(m, p_{1}\right), Y_{n} \sim \operatorname{Binomial}\left(n, p_{2}\right)$ and they are independent. To test $H_{0}: p_{1}=$ $p_{2}=p$ for some predetermined $p \in(0,1)$, consider the test statistic

$$
C_{m, n}^{2}=\frac{\left(X_{m}-m p\right)^{2}}{m p(1-p)}+\frac{\left(Y_{n}-n p\right)^{2}}{n p(1-p)}
$$

(a) Find the limit distribution of $C_{m, n}^{2}$ as $m, n \rightarrow \infty$;
(b) How would you modify the test statistic if p were unknown? What is the limit distribution after modification?

