Math 281C Homework 4 Solutions

1. Let X_1, \ldots, X_n be i.i.d. from the Gamma distribution $\Gamma(\alpha, \gamma)$ with unknown α and γ , whose p.d.f. is

$$f(x) = \frac{1}{\Gamma(\alpha)\gamma^{\alpha}} x^{\alpha-1} e^{-x/\gamma} \mathbb{1}(x > 0)$$

(i) Show that $\Gamma(\alpha, \gamma)$ belongs to an exponential family.

Solution: It can be shown that

$$f(x) = \exp\{\alpha \ln x - \gamma^{-1}x - \alpha \ln \gamma - \ln \Gamma(\alpha)\} \cdot x^{-1} \mathbb{1}\{x > 0\}.$$

So it belongs to an exponential family with parameters $\theta = (\alpha, \gamma^{-1})$ and $T(x) = (\ln x, x)$. (ii) Find a sufficient statistic for (α, γ) .

Solution: By factorization theorem, a sufficient statistic is $T(x) = (\sum_{i=1}^{n} \ln x_i, \sum_{i=1}^{n} x_i)$. Alternatively, $T(x) = (\prod_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i)$ is also correct.

- 2. Let X_1, \ldots, X_n be i.i.d. from $\Gamma(\alpha, \gamma)$.
 - (i) For testing $H_0: \alpha \leq \alpha_0$ versus $H_1: \alpha > \alpha_0$, and $H_0: \alpha = \alpha_0$ versus $H_1: \alpha \neq \alpha_0$, show that there exist UMP unbiased tests whose rejections are based on $W = \prod_{i=1}^n (X_i/\bar{X})$.

Solution: Denote $U \coloneqq \prod_{i=1}^{n} X_i$ and $T \coloneqq \sum_{i=1}^{n} X_i$, then $W = h(U,T) \coloneqq U/(T/n)^n$. We will employ Theorem 6.2.1 in Lecture 10 to prove the claim. To this end, we first show that when $\alpha = \alpha_0$, W is independent of T.

When $\alpha = \alpha_0$, since the exponential family is of full rank, it can be shown that $T = \sum_{i=1}^{n} X_i$ is sufficient and complete, and hence, boundedly complete. We then show W is ancillary. Using the density transformation rule, $X_i \sim \Gamma(\alpha_0, \gamma)$ implies $Z_i := X_i/\gamma \sim \Gamma(\alpha_0, 1)$, so

$$W = \prod_{i=1}^{n} (X_i/\bar{X}) = \prod_{i=1}^{n} \{ (X_i/\gamma)/(\bar{X}/\gamma) \} = \prod_{i=1}^{n} (Z_i/\bar{Z}),$$

where each Z_i is independent of γ . Consequently, W is independent of γ . The desired independence follows from Basu's Theorem (Theorem 6.1.1 in Lecture 10).

We are now ready to apply Theorem 6.2.1. For the first test, notice that h(u,t) is increasing in u for each t, so a UMPU test of size α takes the form

$$\phi(w) = \begin{cases} 1 & \text{when } w \ge c, \\ 0 & \text{when } w < c, \end{cases}$$

where c satisfies $\mathbb{E}_{\alpha_0}\phi(W) = \alpha$.

For the second test, notice that h(u,t) is linear in u for each t, so a UMPU test of size α takes the form

$$\phi(w) = \begin{cases} 1 & \text{when } w \le c_1 \text{ or } w \ge c_2 \\ 0 & \text{when } c_1 < w < c_2, \end{cases}$$

where c_1, c_2 satisfy $\mathbb{E}_{\alpha_0} \phi(W) = \alpha$ and $\mathbb{E}_{\alpha_0}[W\phi(W)] = \alpha \mathbb{E}_{\alpha_0}W$.

(ii) For testing $H_0: \gamma \leq \gamma_0$ versus $H_1: \gamma > \gamma_0$, show that a UMP unbiased test rejects H_0 when $\sum_{i=1}^n X_i > C(\prod_{i=1}^n X_i)$. Here, C(t) is a function of t.

Solution: This is a direct application of Theorem 5.3.3 in Lectures 7 and 8. A UMPU test of size α is

$$\phi(u,t) = \begin{cases} 1 & \text{when } u \ge c(t), \\ 0 & \text{when } u < c(t), \end{cases}$$

where c(t) satisfy $\mathbb{E}_{\gamma_0}[\phi(U,T)|T = t] = \alpha$ for any t.

- 3. Let X and Y be independently distributed according to negative binomial distributions $Nb(p_1, m)$ and $Nb(p_2, n)$ respectively, and let $q_i = 1 p_i$.
 - (i) There exists a UMP unbiased test for testing $H_0: p_1 \le p_2$ versus $H_0: p_1 > p_2$.

Solution: Here m and n are fixed integers. The joint density is

$$f(x,y) = \binom{x+m-1}{x} \binom{y+n-1}{y} \exp\{x \ln p_1 + y \ln p_2 + m \ln q_1 + n \ln q_2\}$$

= $\binom{x+m-1}{x} \binom{y+n-1}{y} \exp\{x \ln(p_1/p_2) + (x+y) \ln p_2 + m \ln q_1 + n \ln q_2\}.$

Denote U = X, T = X + Y, and $\theta = \log(p_1/p_2)$, then, the original test is equivalent to

 $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.

By Theorem 5.3.3 (1), A UMPU test of size α is

$$\phi(u,t) = \begin{cases} 1 & \text{when } u > c(t), \\ \gamma(t) & \text{when } u = c(t), \\ 0 & \text{otherwise,} \end{cases}$$

where $c(t), \gamma(t)$ satisfy $\mathbb{E}_{\theta=0}[\phi(U,T)|T = t] = \alpha$.

(ii) Determine the conditional distribution required for testing H_0 when m = n = 1.

Solution: The conditional distribution required is the density of U given T = t and $p_1 = p_2$. When m = n = 1, X and Y degenerate to geometric distribution, and under $p_1 = p_2$, $X + Y \sim Nb(p, 2)$, so we have

$$\mathbb{P}(U=u|T=t) = \frac{\mathbb{P}(U=u,T=t)}{\mathbb{P}(T=t)} = \frac{\mathbb{P}(X=u,Y=t-u)}{\mathbb{P}(X+Y=t)}$$
$$= \frac{\mathbb{P}(X=u)\mathbb{P}(Y=t-u)}{\mathbb{P}(X+Y=t)} = \frac{(1-p)p^u \cdot (1-p)p^{(t-u)}}{(t+1)(1-p)^2p^t} = \frac{1}{t+1}.$$