Math 281C Homework 4

Due: 5:00pm, April 29th

1. Let X_1, \ldots, X_n be i.i.d. from the Gamma distribution $\Gamma(\alpha, \gamma)$ with unknown α and γ , whose p.d.f. is

$$f(x) = \frac{1}{\Gamma(\alpha)\gamma^{\alpha}} x^{\alpha-1} e^{-x/\gamma} \mathbb{1}(x > 0)$$

- (i) Show that $\Gamma(\alpha, \gamma)$ belongs to an exponential family.
- (ii) Find a sufficient statistic for (α, γ) .
- 2. Let X_1, \ldots, X_n be i.i.d. from $\Gamma(\alpha, \gamma)$.
 - (i) For testing $H_0: \alpha \leq \alpha_0$ versus $H_1: \alpha > \alpha_0$, and $H_0: \alpha = \alpha_0$ versus $H_1: \alpha \neq \alpha_0$, show that there exist UMP unbiased tests whose rejections are based on $W = \prod_{i=1}^n (X_i/\bar{X})$.
 - (ii) For testing $H_0: \gamma \leq \gamma_0$ versus $H_1: \gamma > \gamma_0$, show that a UMP unbiased test rejects H_0 when $\sum_{i=1}^n X_i > C(\prod_{i=1}^n X_i)$. Here, C(t) is a function of t.
- 3. Let X and Y be independently distributed according to negative binomial distributions $Nb(p_1, m)$ and $Nb(p_2, n)$ respectively, and let $q_i = 1 p_i$.
 - (i) There exists a UMP unbiased test for testing $H_0: p_1 \le p_2$ versus $H_0: p_1 > p_2$.
 - (ii) Determine the conditional distribution required for testing H_0 when m = n = 1.