Math 281C Homework 3

Due: 5:00pm, April 22nd

1. Let X_1, \ldots, X_n be i.i.d. from $N(\theta, \sigma^2)$ with σ^2 known. Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define the test that rejects H_0 if and only if

 $\bar{X} > \sigma z_{\alpha/2} / \sqrt{n} + \theta_0$ or $\bar{X} < -\sigma z_{\alpha/2} / \sqrt{n} + \theta_0$,

where $z_{\alpha/2}$ is the upper $\alpha/2$ -quantile of N(0,1), and $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$. Verify that this test a UMP unbiased (UMPU) level α test.

- 2. Let X_1, \ldots, X_{10} be i.i.d. from Bernoulli(p).
 - (i) Find a UMP test of size $\alpha = 0.1$ for testing $H_0: p \le 0.2$ or $p \ge 0.7$ versus $H_1: 0.2 .$
 - (ii) Find the power of the UMP test in (i) when p = 0.4.
 - (iii) Find a UMP unbiased test of size $\alpha = 0.1$ for testing $H_0: p = 0.2$ versus $H_1: p \neq 0.2$.
 - (iv) Find the power of the UMP unbiased test in (iii) when p = 0.4.
- 3. Let X_1, \ldots, X_n be i.i.d. from some distribution function $F_{\theta}(x)$. Find a UMP unbiased test for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ if
 - (i) $F_{\theta}(\cdot)$ is the CDF of Poisson(θ), that is,

$$\mathbb{P}_{\theta}(X=x) = \theta^x e^{-\theta} / x!, \quad x = 0, 1, 2, \dots \text{ and } \theta > 0.$$

In this case, $\theta_0 > 0$.

(ii) $F_{\theta}(\cdot)$ is the CDF of Geometric(θ), that is,

$$\mathbb{P}_{\theta}(X=x) = (1-\theta)^{x-1}\theta, \quad x=1,2,\dots \text{ and } 0 \le \theta \le 1.$$

In this case, $0 < \theta_0 < 1$.

4. Let X and Y be independently distributed with Poisson distributions $Poisson(\lambda)$ and $Poisson(\mu)$. Find the power of the UMP unbiased test of $H_0: \mu \leq \lambda$ versus the alternative $\lambda = 1, \mu = 2$. at level of significance $\alpha = 0.1$.