Math 281C Homework 2 Solutions

Throughout the solutions, uppercase letters denote random variables, and lowercase letters denote realized values.

1. Suppose X is one observation from a population with $\operatorname{beta}(\theta, 1) \operatorname{pdf}-C x^{\theta-1}$ for $0<x<1$.
(a) For testing $H_{0}: \theta \leq 1$ versus $H_{1}: \theta>1$, find the size and sketch the power function of the test that rejects H_{0} if $X>1 / 2$.
Solution: It follows from $\int_{0}^{1} C x^{\theta-1} \mathrm{~d} x=1$ that $C=\theta$. For any $\theta>0$,

$$
\mathbb{P}(X>1 / 2 \mid \theta)=1-(1 / 2)^{\theta}
$$

so the size is $\sup _{\theta \leq 1} \mathbb{P}(X>1 / 2 \mid \theta)=1 / 2$. The power curve can be accordingly drawn.
(b) Find the most powerful level α test of $H_{0}: \theta=1$ versus $H_{1}: \theta=2$.

Solution: By the N-P Lemma, we reject H_{0} if

$$
\lambda=\frac{f(x \mid \theta=2)}{f(x \mid \theta=1)}=2 x>c .
$$

The value c satisfies $\alpha=\mathbb{P}(2 X>c \mid \theta=1)$, which yields $c=2(1-\alpha)$.
(c) Is there a UMP test of $H_{0}: \theta \leq 1$ versus $H_{1}: \theta>1$? If so, find it; if not, prove so.

Solution: Yes. It can be shown that the distribution has MLR in x, and the existence of UMP is guaranteed by Theorem 3.2.1. The test rejects H_{0} if $x \geq 1-\alpha$.
2. Let X be one observation from a Cauchy scale distribution with density

$$
f_{\theta}(x)=\frac{\theta}{\pi} \frac{1}{\theta^{2}+x^{2}}, \quad-\infty<x<\infty, \theta>0
$$

(a) Show that this family does not have an MLR in x.

Solution: For any $\theta_{2}>\theta_{1}$,

$$
\frac{f\left(x \mid \theta_{2}\right)}{f\left(x \mid \theta_{1}\right)}=\frac{\theta_{2}}{\theta_{1}} \frac{\theta_{1}^{2}+x^{2}}{\theta_{2}^{2}+x^{2}}
$$

and its derivative depends on the sign of x, so the above function is not monotonic in x.
(b) Show that the distribution of $|X|$ does have an MLR.

Solution: By symmetry, the density of $|X|$ is

$$
f_{\theta}(x)=\frac{2 \theta}{\pi} \frac{1}{\theta^{2}+x^{2}}, \quad 0 \leq x<\infty, \theta>0
$$

The likelihood ratio can be similarly calculated, and is monotonic in x.
3. Let X be one observation from a Cauchy distribution

$$
f_{\theta}(x)=\frac{C}{1+(x-\theta)^{2}}, \quad x \in \mathbb{R}
$$

(a) Show that this family does not have an MLR in x.

Solution: For any $\theta_{2}>\theta_{1}$,

$$
\lambda\left(x \mid \theta_{2}, \theta_{1}\right):=\frac{f\left(x \mid \theta_{2}\right)}{f\left(x \mid \theta_{1}\right)}=\frac{1+\left(x-\theta_{1}\right)^{2}}{1+\left(x-\theta_{2}\right)^{2}}
$$

We have $\lim _{x \rightarrow-\infty} \lambda\left(x \mid \theta_{2}, \theta_{1}\right)=\lim _{x \rightarrow \infty} \lambda\left(x \mid \theta_{2}, \theta_{1}\right)=1$, and $\lambda(0) \neq 1$, so $\lambda\left(x \mid \theta_{2}, \theta_{1}\right)$ is not monotonic in x. Alternatively, we can calculate its derivative to reach the same conclusion.
(b) Show that the test

$$
\phi(x)=\mathbb{1}(1<x<3)
$$

is UMP of its size for testing $H_{0}: \theta=0$ versus $H_{1}: \theta=1$. Calculate the Type I and type II error probabilities.
Solution: By the N-P Lemma, the UMP test rejects H_{0} if

$$
\lambda(x)=\frac{1+x^{2}}{1+(x-1)^{2}}>c
$$

and such test is unique. It remains to check that $\lambda(x)>c$ is equivalent to $1<x<3$, which can be done by checking the derivative of $\lambda(x)$ and $\lambda(1)=\lambda(3)$.
Finally, the Type I error probability is $\mathbb{P}(1<X<3 \mid \theta=0)=0.1476$, and the Type II error probability is $\mathbb{P}(X \leq 1$ or $X \geq 3 \mid \theta=1)=0.6476$.
4. Let X_{1}, \ldots, X_{n} be i.i.d. from the exponential family

$$
f_{\theta}(\mathbf{x})=\exp \{\eta(\theta) T(\mathbf{x})-\xi(\theta)\} h(\mathbf{x})
$$

where $\eta(\theta)$ is strictly monotone in θ. Show that UMP tests do not exist for testing $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$. Hint: Examine the example in Section 4.2.
Solution: WLOG, we assume that $\eta(\theta)$ is strictly increasing in θ. For any size α and $\theta_{1}<\theta_{0}$, the test $\phi_{1}(\boldsymbol{x})=\mathbb{1}\left\{\sum_{i=1}^{n} T\left(x_{i}\right)<c_{1}\right\}$ has the highest power at $\theta=\theta_{1}$, where c_{1} satisfies $\alpha=\mathbb{P}\left(\sum_{i=1}^{n} T\left(X_{i}\right)<\right.$ $\left.c_{1} \mid \theta=\theta_{0}\right)$, and if a UMP test exists for all $\theta_{1} \neq \theta_{0}$, then it must be ϕ_{1}. However, for any $\theta_{1}>\theta_{0}$, consider another test $\phi_{2}(\boldsymbol{x})=\mathbf{1}\left\{\sum_{i=1}^{n} T\left(x_{i}\right)>c_{2}\right\}$ where c_{2} satisfies $\alpha=\mathbb{P}\left(\sum_{i=1}^{n} T\left(X_{i}\right)>c_{2} \mid \theta=\theta_{0}\right)$, and it follows from the N-P Lemma that ϕ_{2} is more powerful than ϕ_{1}. This is a contradiction.
5. (optional) Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Unif}(\theta, \theta+1)$ distribution. To test $H_{0}: \theta=0$ versus $H_{1}: \theta>0$, use the test

$$
\text { reject } H_{0} \quad \text { if } Y_{n} \geq 1 \text { or } Y_{1} \geq k
$$

where k is a constant, $Y_{1}=\min _{1 \leq i \leq n} X_{i}$ and $Y_{n}=\max _{1 \leq i \leq n} X_{i}$. Hint: find the marginal distribution of Y_{1}, and the joint distribution of $\left(Y_{1}, Y_{n}\right)$.
(a) Determine k so that the test has size α.

Solution: It follows from

$$
\alpha=\mathbb{P}\left(Y_{1} \geq k \text { or } Y_{n} \geq 1 \mid \theta=0\right)=(1-k)^{n}
$$

that $k=1-\alpha^{1 / n}$.
(b) Find an expression for the power function of the test in part (a).

Solution: The PDF of Y_{1}, Y_{n} are

$$
f_{Y_{1}}(y)=n(\theta+1-y)^{n-1}, \quad f_{Y_{n}}(y)=n(y-\theta)^{n-1}, \quad \theta \leq y \leq \theta+1
$$

and the joint PDF of $\left(Y_{1}, Y_{n}\right)$ is

$$
f_{Y_{1}, Y_{n}}\left(y_{1}, y_{n}\right)=n(n-1)\left(y_{n}-y_{1}\right)^{n-2}, \quad \theta \leq y_{1} \leq y_{n} \leq \theta+1 .
$$

If $0<\theta \leq k$,

$$
\begin{aligned}
\mathbb{P}\left(Y_{1} \geq k \text { or } Y_{n} \geq 1 \mid \theta\right) & =\mathbb{P}\left(Y_{1} \geq k \mid \theta\right)+\mathbb{P}\left(Y_{n} \geq 1 \mid \theta\right)-\mathbb{P}\left(Y_{1} \geq k, Y_{n} \geq 1 \mid \theta\right) \\
& =\mathbb{P}\left(Y_{1} \geq k \mid \theta\right)+\mathbb{P}\left(Y_{1}<k, Y_{n} \geq 1 \mid \theta\right) \\
& =1+\alpha-(1-\theta)^{n} .
\end{aligned}
$$

If $\theta \geq k$,

$$
\mathbb{P}\left(Y_{1} \geq k \text { or } Y_{n} \geq 1 \mid \theta\right)=1
$$

