Math 281C Homework 2

Due: 5:00pm, April 15th

- 1. Suppose X is one observation from a population with $beta(\theta, 1) pdf Cx^{\theta-1}$ for 0 < x < 1.
 - (a) For testing $H_0: \theta \leq 1$ versus $H_1: \theta > 1$, find the size and sketch the power function of the test that rejects H_0 if X > 1/2.
 - (b) Find the most powerful level α test of $H_0: \theta = 1$ versus $H_1: \theta = 2$.
 - (c) Is there a UMP test of $H_0: \theta \leq 1$ versus $H_1: \theta > 1$? If so, find it; if not, prove so.
- 2. Let X be one observation from a Cauchy scale distribution with density

$$f_{\theta}(x) = \frac{\theta}{\pi} \frac{1}{\theta^2 + x^2}, \quad -\infty < x < \infty, \theta > 0.$$

- (a) Show that this family does not have an MLR in x.
- (b) Show that the distribution of |X| does have an MLR.
- 3. Let X be one observation from a Cauchy distribution

$$f_{\theta}(x) = \frac{C}{1 + (x - \theta)^2}, \quad x \in \mathbb{R}.$$

- (a) Show that this family does not have an MLR in x.
- (b) Show that the test

$$\phi(x) = \mathbb{1}(1 < x < 3)$$

is UMP of its size for testing $H_0: \theta = 0$ versus $H_1: \theta = 1$. Calculate the Type I and type II error probabilities.

4. Let X_1, \ldots, X_n be i.i.d. from the exponential family

$$f_{\theta}(\mathbf{x}) = \exp\{\eta(\theta)T(\mathbf{x}) - \xi(\theta)\}h(\mathbf{x}),$$

where $\eta(\theta)$ is strictly monotone in θ . Show that UMP tests do not exist for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Hint: Examine the example in Section 4.2.

5. (optional) Let X_1, \ldots, X_n be a random sample from $\text{Unif}(\theta, \theta+1)$ distribution. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$, use the test

reject
$$H_0$$
 if $Y_n \ge 1$ or $Y_1 \ge k$,

where k is a constant, $Y_1 = \min_{1 \le i \le n} X_i$ and $Y_n = \max_{1 \le i \le n} X_i$. Hint: find the marginal distribution of Y_1 , and the joint distribution of (Y_1, Y_n) .

- (a) Determine k so that the test has size α .
- (b) Find an expression for the power function of the test in part (a).