Math 281C Homework 1 Solutions

1. The random variable X has p.d.f $f(x) = e^{-x}$, x > 0. One observation is obtained on the random variable $Y = X^{\theta}$, and a test of $H_0: \theta = 1$ versus $H_1: \theta = 2$ needs to be constructed. Find the UMP level $\alpha = 0.1$ test, and compute the Type II error probability.

Solution: Since $Y = X^{\theta}$, for any y > 0, we have

$$\mathbb{P}(Y \le y) = \mathbb{P}(X \le y^{1/\theta}) = 1 - e^{-y^{1/\theta}},$$

and the PDF of Y is

$$f_Y(y) = \frac{1}{\theta} e^{-y^{1/\theta}} y^{1/\theta - 1}.$$

By the Neyman–Pearson Lemma, the UMP test rejects H_0 if

$$\lambda(y) = \frac{f(y|\theta = 2)}{f(y|\theta = 1)} = \frac{1}{2}y^{-1/2}e^{y-y^{1/2}} > C$$

for some constant C. It can be checked that $\lambda(y)$ is decreasing for $y \in (0,1)$ and increasing for $y \in (1,\infty)$, so it is equivalent to reject H_0 if $y < c_0$ or $y > c_1$, we then solve c_0 and c_1 numerically. Combining

$$0.1 = \alpha = \mathbb{P}(Y < c_0 | \theta = 1) + \mathbb{P}(Y > c_1 | \theta = 1) = 1 - e^{-c_0} + e^{-c_1}$$

and $\lambda(c_0) = \lambda(c_1)$ gives us $c_0 = 0.076546$ and $c_1 = 3.637798$. The above set of equations can be numerically solved by writing an R program.

Consequently, the Type II error probability is

$$\mathbb{P}(c_0 \le Y \le c_1 | \theta = 2) = e^{-c_0^{1/2}} - e^{-c_1^{1/2}} = 0.609824.$$

2. Let X_1, X_2 be iid Uniform $(\theta, \theta + 1)$. For testing $H_0: \theta = 0$ versus $H_1: \theta > 0$, we have two competing tests

$$\phi_1(X_1)$$
: Reject H_0 if $X_1 > 0.95$,
 $\phi_2(X_1, X_2)$: Reject H_0 if $X_1 + X_2 > C$.

(a) Find the value C so that ϕ_2 has the same size as ϕ_1 .

Solution: For $\phi_1(X_1)$, $\alpha = \mathbb{P}(X_1 > 0.95 | \theta = 0) = 0.05$, then for $\phi_2(X_1, X_2)$, the density of $X_1 + X_2$ can be derived based on convolution,

$$f_{X_1+X_2}(x|\theta=0) = \begin{cases} x & \text{if } 0 \le x \le 1\\ 2-x & \text{if } 1 < x \le 2\\ 0 & \text{otherwise,} \end{cases}$$

and $0.05 = \alpha = \mathbb{P}(X_1 + X_2 > C | \theta = 0) = (2 - C)^2/2$, which gives us C = 1.68.

(b) Calculate the power function of each test. Draw a well-labeled graph of each power function. Solution: For φ₁(X₁),

$$\beta_1(\theta) = \mathbb{P}(X_1 > 0.95 | \theta) = \begin{cases} \theta + 0.05 & \text{if } 0 < \theta \le 0.95 \\ 1 & \text{if } \theta > 0.95. \end{cases}$$

For $\phi_2(X_1, X_2)$, the density of $X_1 + X_2$ under $\theta > 0$ can be similarly obtained, and

$$\beta_2(\theta) = \mathbb{P}(X_1 + X_2 > C|\theta) = \begin{cases} (2\theta + 2 - C)^2/2 & \text{if } 0 < \theta \le (C - 1)/2\\ 1 - (C - 2\theta)^2/2 & \text{if } (C - 1)/2 < \theta \le C/2\\ 1 & \text{if } \theta > C/2. \end{cases}$$

(c) Prove or disprove: ϕ_2 is a more powerful test that ϕ_1 .

Solution: No. ϕ_1 is more powerful when θ is near 0.

(d) Show how to get a test that has the same size but is more powerful than ϕ_2 .

Solution: Consider the new test

$$\phi_3(X_1, X_2)$$
: Reject H_0 if $X_1 + X_2 > C$ or $X_1 > 1$ or $X_2 > 1$.

Under H_0 , $\mathbb{P}(X_1 > 1) = \mathbb{P}(X_2 > 1) = 0$, so ϕ_3 has the same size as ϕ_2 , but the reject region of ϕ_3 is larger than the reject region of ϕ_2 , so it is more powerful.

3. Show that for a random sample X_1, \ldots, X_n from a $N(0, \sigma^2)$ population, the most powerful test of $H_0: \sigma = \sigma_0$ versus $H_1: \sigma = \sigma_1$, where $\sigma_0 < \sigma_1$, is given by

$$\phi(T) = \begin{cases} 1 & \text{if } T > c \\ 0 & \text{if } T \le c, \end{cases}$$

where $T = T(X_1, \ldots, X_n) = \sum_{i=1}^n X_i^2$. For a given value of α (the size of the Type I error), show how the value of c is explicitly determined.

Solution: By the Neyman–Pearson Lemma, the UMP test rejects H_0 if

$$\lambda(X_1, \dots, X_n) = \frac{f(X_1, \dots, X_n | \sigma = \sigma_1)}{f(X_1, \dots, X_n | \sigma = \sigma_0)}$$
$$= \frac{\sigma_0^n}{\sigma_1^n} \exp\left\{T\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)\right\} > k$$

for some constant k. Since the above function is increasing in T, so it is equivalent that we reject H_0 if T > c.

To determine the value of c, notice that under $\sigma = \sigma_0$, $\sum_{i=1}^n X_i^2 / \sigma_0^2 \sim \chi_n^2$, so

$$\alpha = \mathbb{P}(T > c | \sigma = \sigma_0) = \mathbb{P}(\chi_n^2 > c / \sigma_0^2),$$

which gives $c = \sigma_0^2 \chi_{n,\alpha}^2$.