Math 281C Homework 1 Solutions

1. The random variable X has p.d.f $f(x)=e^{-x}, x>0$. One observation is obtained on the random variable $Y=X^{\theta}$, and a test of $H_{0}: \theta=1$ versus $H_{1}: \theta=2$ needs to be constructed. Find the UMP level $\alpha=0.1$ test, and compute the Type II error probability.

Solution: Since $Y=X^{\theta}$, for any $y>0$, we have

$$
\mathbb{P}(Y \leq y)=\mathbb{P}\left(X \leq y^{1 / \theta}\right)=1-e^{-y^{1 / \theta}}
$$

and the PDF of Y is

$$
f_{Y}(y)=\frac{1}{\theta} e^{-y^{1 / \theta}} y^{1 / \theta-1}
$$

By the Neyman-Pearson Lemma, the UMP test rejects H_{0} if

$$
\lambda(y)=\frac{f(y \mid \theta=2)}{f(y \mid \theta=1)}=\frac{1}{2} y^{-1 / 2} e^{y-y^{1 / 2}}>C
$$

for some constant C. It can be checked that $\lambda(y)$ is decreasing for $y \in(0,1)$ and increasing for $y \in(1, \infty)$, so it is equivalent to reject H_{0} if $y<c_{0}$ or $y>c_{1}$, we then solve c_{0} and c_{1} numerically. Combining

$$
0.1=\alpha=\mathbb{P}\left(Y<c_{0} \mid \theta=1\right)+\mathbb{P}\left(Y>c_{1} \mid \theta=1\right)=1-e^{-c_{0}}+e^{-c_{1}}
$$

and $\lambda\left(c_{0}\right)=\lambda\left(c_{1}\right)$ gives us $c_{0}=0.076546$ and $c_{1}=3.637798$. The above set of equations can be numerically solved by writing an R program.
Consequently, the Type II error probability is

$$
\mathbb{P}\left(c_{0} \leq Y \leq c_{1} \mid \theta=2\right)=e^{-c_{0}^{1 / 2}}-e^{-c_{1}^{1 / 2}}=0.609824
$$

2. Let X_{1}, X_{2} be iid Uniform $(\theta, \theta+1)$. For testing $H_{0}: \theta=0$ versus $H_{1}: \theta>0$, we have two competing tests

$$
\begin{aligned}
\phi_{1}\left(X_{1}\right): & \text { Reject } H_{0} \text { if } X_{1}>0.95 \\
\phi_{2}\left(X_{1}, X_{2}\right) & : \text { Reject } H_{0} \text { if } X_{1}+X_{2}>C .
\end{aligned}
$$

(a) Find the value C so that ϕ_{2} has the same size as ϕ_{1}.

Solution: For $\phi_{1}\left(X_{1}\right), \alpha=\mathbb{P}\left(X_{1}>0.95 \mid \theta=0\right)=0.05$, then for $\phi_{2}\left(X_{1}, X_{2}\right)$, the density of $X_{1}+X_{2}$ can be derived based on convolution,

$$
f_{X_{1}+X_{2}}(x \mid \theta=0)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } 1<x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

and $0.05=\alpha=\mathbb{P}\left(X_{1}+X_{2}>C \mid \theta=0\right)=(2-C)^{2} / 2$, which gives us $C=1.68$.
(b) Calculate the power function of each test. Draw a well-labeled graph of each power function.

Solution: For $\phi_{1}\left(X_{1}\right)$,

$$
\beta_{1}(\theta)=\mathbb{P}\left(X_{1}>0.95 \mid \theta\right)= \begin{cases}\theta+0.05 & \text { if } 0<\theta \leq 0.95 \\ 1 & \text { if } \theta>0.95\end{cases}
$$

For $\phi_{2}\left(X_{1}, X_{2}\right)$, the density of $X_{1}+X_{2}$ under $\theta>0$ can be similarly obtained, and

$$
\beta_{2}(\theta)=\mathbb{P}\left(X_{1}+X_{2}>C \mid \theta\right)= \begin{cases}(2 \theta+2-C)^{2} / 2 & \text { if } 0<\theta \leq(C-1) / 2 \\ 1-(C-2 \theta)^{2} / 2 & \text { if }(C-1) / 2<\theta \leq C / 2 \\ 1 & \text { if } \theta>C / 2\end{cases}
$$

(c) Prove or disprove: ϕ_{2} is a more powerful test that ϕ_{1}.

Solution: No. ϕ_{1} is more powerful when θ is near 0 .
(d) Show how to get a test that has the same size but is more powerful than ϕ_{2}.

Solution: Consider the new test

$$
\phi_{3}\left(X_{1}, X_{2}\right): \text { Reject } H_{0} \text { if } X_{1}+X_{2}>C \text { or } X_{1}>1 \text { or } X_{2}>1 .
$$

Under $H_{0}, \mathbb{P}\left(X_{1}>1\right)=\mathbb{P}\left(X_{2}>1\right)=0$, so ϕ_{3} has the same size as ϕ_{2}, but the reject region of ϕ_{3} is larger than the reject region of ϕ_{2}, so it is more powerful.
3. Show that for a random sample X_{1}, \ldots, X_{n} from a $N\left(0, \sigma^{2}\right)$ population, the most powerful test of $H_{0}: \sigma=\sigma_{0}$ versus $H_{1}: \sigma=\sigma_{1}$, where $\sigma_{0}<\sigma_{1}$, is given by

$$
\phi(T)= \begin{cases}1 & \text { if } T>c \\ 0 & \text { if } T \leq c,\end{cases}
$$

where $T=T\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i}^{2}$. For a given value of α (the size of the Type I error), show how the value of c is explicitly determined.
Solution: By the Neyman-Pearson Lemma, the UMP test rejects H_{0} if

$$
\begin{aligned}
\lambda\left(X_{1}, \ldots, X_{n}\right) & =\frac{f\left(X_{1}, \ldots, X_{n} \mid \sigma=\sigma_{1}\right)}{f\left(X_{1}, \ldots, X_{n} \mid \sigma=\sigma_{0}\right)} \\
& =\frac{\sigma_{0}^{n}}{\sigma_{1}^{n}} \exp \left\{T\left(\frac{1}{2 \sigma_{0}^{2}}-\frac{1}{2 \sigma_{1}^{2}}\right)\right\}>k
\end{aligned}
$$

for some constant k. Since the above function is increasing in T, so it is equivalent that we reject H_{0} if $T>c$.
To determine the value of c, notice that under $\sigma=\sigma_{0}, \sum_{i=1}^{n} X_{i}^{2} / \sigma_{0}^{2} \sim \chi_{n}^{2}$, so

$$
\alpha=\mathbb{P}\left(T>c \mid \sigma=\sigma_{0}\right)=\mathbb{P}\left(\chi_{n}^{2}>c / \sigma_{0}^{2}\right),
$$

which gives $c=\sigma_{0}^{2} \chi_{n, \alpha}^{2}$.

