
MATH 281C: Mathematical Statistics

Lecture 9

Let us first recall our main bound on the expected suprema of empirical processes. If F is a
class of real-valued functions on X with envelope F, then (assuming that PF2 < ∞), we have

E sup
f∈F
|Pn f − P f | ≤

C
√

n
‖F‖L2(P)J(F,F ), (9.1)

where

J(F,F ) =

∫ 1

0

√
1 + log sup

Q
M(ε‖F‖L2(Q),F , L2(Q)) dε.

An important implication of this bound is that when F is a Boolean function class with finite VC
dimension D,

E sup
f∈F
|Pn f − P f | ≤ C

√
D
n
. (9.2)

In this lecture, we will discuss an application of the bounds (9.1) and (9.2) to a problem in
M-estimation. Our treatment here will be a mix of rigor and heuristics. We will come back to
M-estimation in the next lecture where all the heuristic arguments will be rigorized.

1 Application to an M-estimation problem

Consider a mode estimation problem. Suppose X1, . . . , Xn are iid observations from a univariate
density p. Assume that p has a single mode θ0, and that it is symmetric around θ0 ∈ R. In addition,
assume that p is smooth and bounded, and that p′(x) < 0 for x > θ0 and p′(x) > 0 for x < θ0. You
can think of p as the normal density with mean θ0, or the Cauchy density centered at θ0.

Consider now the problem of estimating θ0. For this, define

M(θ) =

∫ θ+1

θ−1
p(x)dx = P(|X1 − θ| ≤ 1) = PI{θ−1≤X1≤θ+1}. (9.3)

Note that

M′(θ) = p(θ + 1) − p(θ − 1) and M′′(θ) = p′(θ + 1) − p′(θ − 1).

Because of the assumptions on p, it is clear that M′(θ0) = 0, and for θ , θ0, we have M′(θ) < 0 for
θ > θ0 and M′(θ) > 0 for θ < θ0. This implies that θ 7→ M(θ) has a unique maximum at θ0. Also,
M′′(θ0) = p′(θ0 + 1) − p′(θ0 − 1) < 0.
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Because θ0 uniquely maximizes M(θ) over θ ∈ R, a reasonable method of estimating θ0 is to
estimate it by θ̂n, where θ̂n is any maximizer of Mn(θ) over θ ∈ R with

Mn(θ) :=
1
n

n∑
i=1

I{Xi ∈ [θ − 1, θ + 1]}.

It is now natural to ask the following questions:

1. Is θ̂n consistent as an estimator for θ0, i.e., is it true that |̂θn − θ0| converges in probability to
zero?

2. Assuming consistency, what is the rate of convergence rn of |̂θn − θ0| to zero?

3. What is the limiting distribution of rn(̂θn − θ0)?

Below we will prove consistency of θ̂n rigorously. We will also provide a heuristic argument for
finding the rate rn, which we will make rigorous in the next lecture. The limiting distribution will
be addressed in a few weeks after the discussion on uniform central limit theorems.

The fundamental first step for analyzing M-estimators is the following inequality:

0 ≤ M(θ0) − M(̂θn) ≤ M(θ0) − Mn(θ0) − M(̂θn) + Mn(̂θn)

We can rewrite the above inequality in Empirical Process notation. For θ ∈ R, define the function
mθ : R→ R by

mθ(x) = I{θ − 1 ≤ x ≤ θ + 1}.

With this notation, the inequality becomes

0 ≤ P(mθ0 − mθ̂n
) ≤ (Pn − P)(mθ̂n

− mθ0). (9.4)

We refer to this inequality as the basic inequality.
To derive the consistency of θ̂n from (9.4), we can crudely bound the RHS of (9.4) as

(Pn − P)(mθ̂n
− mθ0) ≤ 2 sup

θ∈R
|Pnmθ − Pmθ|.

It is easy to check that {mθ : θ ∈ R} is a Boolean class of functions with VC dimension 2. By
inequality (9.2),

E sup
θ∈R
|Pnmθ − Pmθ| . n−1/2 and hence sup

θ∈R
|Pnmθ − Pmθ|

P
−→ 0.

Combining this with (9.4), we obtain

M(θ0) − M(̂θn) = P(mθ0 − mθ̂n
)
P
−→ 0. (9.5)

By the assumptions on p, the following is true: for every ε > 0,

M(θ0 ± ε) = sup
θ∈R:|θ−θ0 |≥ε

M(θ) < M(θ0). (9.6)
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Together, (9.5) and (9.6) imply that |̂θn − θ0|
P
−→ 0. To see this, first fix ε > 0 and use (9.6) to obtain

an η > 0 such that

sup
θ∈R:|θ−θ0 |≥ε

M(θ) < M(θ0) − η.

It follows then that

P(|̂θn − θ0| ≥ ε) ≤ P{M(̂θn) < M(θ0) − η} = P{M(θ0) − M(̂θn) > η} → 0,

where the last (converging to zero) assertion follows from (9.5). This proves |̂θn − θ0|
P
−→ 0.

This argument for proving consistency of an M-estimator is quite general, and can be isolated
in the following theorem; see Theorem 5.7 in van der Vaart (1998).

Theorem 1.1 (Consistency). Let {Mn} be a sequence of random functions of θ ∈ Θ, and let M be a
fixed deterministic function of θ ∈ Θ. Let θ̂n be any maximizer of {Mn(θ), θ ∈ Θ}, and let θ0 be the
unique maximizer θ 7→ M(θ). Suppose the following two conditions hold

1. supθ∈Θ |Mn(θ) − M(θ)|
P
−→ 0.

2. For every ε > 0, supθ∈Θ:d(θ,θ0)≥ε M(θ) < M(θ0). Here d is a metric on Θ.

Then d(̂θn, θ0)
P
−→ 0 as n→ ∞.

The assumption supθ∈Θ |Mn(θ) − M(θ)|
P
−→ 0 is often too strong for consistency (and also not

always easy to check), but there exist results under weaker conditions.
Now that the consistency of θ̂n is established, the next natural question is about the rate of

convergence. We can first try to go over the consistency argument again to see it gives an explicit
rate of convergence for |̂θn − θ0|. We will first argue heuristically.

The consistency argument given above was based on the inequality:

0 ≤ M(θ0) − M(̂θn) ≤ (Pn − P)(mθ̂n
− mθ0) ≤ 2 sup

θ∈R
|Pnmθ − Pmθ|. (9.7)

For consistency, we used that the RHS above converges in probability to zero. But inequality (9.2)
actually implies that

E sup
θ∈R
|Pnmθ − Pmθ| ≤ Cn−1/2,

which gives

sup
θ∈R
|Pnmθ − Pmθ| = OP(n−1/2).

Inequality (9.7) then implies

0 ≤ M(θ0) − M(̂θn) = OP(n−1/2). (9.8)

From here, to obtain an explicit rate for |̂θn− θ0|, we need to use some structure of the function M(·).
Note that the the second derivative of M at θ0 equals

M′′(θ0) = p′(θ0 + 1) − p′(θ0 − 1),
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which is strictly negative. As a result, there exists a constant C and a neighborhood of θ0 such that
for all θ in that neighborhood, we can write

M(θ0) − M(θ) ≥ C(θ − θ0)2. (9.9)

The constant C is related to M′′(θ0). Using this, we can heuristically write

M(θ0) − M(̂θn) ≥ C(̂θn − θ0)2. (9.10)

In other words, we are assuming that θ̂n belongs to the neighborhood of θ0 where (9.9) holds.
Because of the consistency of θ̂n (which we have rigorously proved), inequality (9.10) can be made
rigorous. Combining (9.10) with (9.8), we deduce that

(̂θn − θ0)2 = OP(n−1/2),

and hence

|̂θn − θ0| = OP(n−1/4).

We have therefore obtained n−1/4 as a rate of convergence for |̂θn − θ0|. It turns out however that

|̂θn − θ0| = OP(n−1/3) (optimal rate of convergence)

In other words, n−1/4 is slower than the actual rate of convergence and is a refection of some loose-
ness in our proof technique. The main source of looseness is in the inequality:

(Pn − P)(mθ̂n
− mθ0) ≤ 2 sup

θ∈R
|Pnmθ − Pmθ| = OP(n−1/2). (9.11)

It turns out that the LHS above is much smaller than the RHS. To get a heuristic understanding of
the size of the LHS above, let us first compute bounds for

E|(Pn − P)(mθ − mθ0)|

for a fixed θ that is close to θ0. Clearly,

E|(Pn − P)(mθ − mθ0)| ≤
√

Var(Pn(mθ − mθ0)

=
1
√

n

√
var(mθ(X1) − mθ0(X1)) ≤

1
√

n

√
E{mθ(X1) − mθ0(X1)}2. (9.12)

Now for θ close to θ0 (and θ < θ0), we have

mθ(x) − mθ0(x) = I(θ − 1 ≤ x ≤ θ0 − 1) − I(θ + 1 ≤ x ≤ θ0 + 1).

Thus

E{mθ(X1) − mθ0(X1)}2 ≤ P(θ − 1 ≤ X1 ≤ θ0 − 1) + P(θ + 1 ≤ X1 ≤ θ0 + 1) ≤ 2p(θ0)|θ − θ0|.

Combining this with (9.12), we obtain

E|(Pn − P)(mθ − mθ0)| ≤

√
2p(θ0)

n
|θ − θ0|

1/2,
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so that

(Pn − P)(mθ − mθ0) = OP
(
|θ − θ0|

1/2n−1/2).
This is true for a fixed θ that is close to θ0. Heuristically, this suggests that

(Pn − P)(mθ̂n
− mθ0) = OP

(
|̂θn − θ0|

1/2n−1/2)
We shall formally justify this later. Note that this bound is an stronger compared to our earlier bound
(9.11). Plugging this in the RHS of the basic inequality (9.4), and using the quadratic bound (9.10)
on the LHS of (9.4), we deduce that

C(̂θn − θ0)2 ≤ OP
(
|̂θn − θ0|

1/2n−1/2).
Canceling |̂θn − θ0|

1/2 from both sides, we deduce that

|̂θn − θ0|
1/2 = OP(n−1/3). (9.13)

As mentioned earlier, this is the correct rate for θ̂n − θ0. Indeed, it turns out that

n1/2(̂θn − θ0)
d
−→ argmax

h∈R

(
aZh − bh2)

as n → ∞, where Zh, h ∈ R is a two-sided Brownian motion starting from 0, and a, b are two
constants depending on p and θ0. We will prove this limiting result later but it tells us now that
n−1/3 is the correct rate of convergence.

We will make the rate result (9.13) rigorous in the next lecture. A key ingredient in the rigorous
argument will involve establishing the inequality

E sup
θ:|θ−θ0 |≤δ

|(Pn − P)(mθ − mθ0)| ≤ C

√
δ

n
(9.14)

for δ sufficiently small. The above inequality can be derived as a consequence of (9.1). Indeed, to
apply (9.1), we first need to obtain an envelope for the class {mθ − mθ0 : θ ∈ [θ0 − δ, θ0 + δ]}. It is
not hard to see that

F(x) := I[θ0−1−δ, θ0−1+δ](x) + I[θ0+1−δ, θ0+1+δ](x)

is an envelope function. Furthermore,

PF2 ≤ P(θ0 − 1 − δ ≤ Xi ≤ θ0 − 1 + δ) + P(θ0 + 1 − δ ≤ X1 ≤ θ0 + 1 + δ) ≤ 4p(θ0)δ.

Thus, (9.1) implies

E sup
θ:|θ−θ0 |≤δ

|(Pn − P)(mθ − mθ0)| ≤ C

√
δ

n
J(F,F ),

where F = {mθ − mθ0 : |θ − θ0| ≤ δ}. This will prove (9.14) provided J(F,F ) < ∞. This will
follow from the fact that the class F has finite VC subgraph dimension (to be defined shortly). Note
that this is not a Boolean class of functions so we need VC subgraph dimension as opposed to VC
dimension.
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Let us now summarize this discussion of a heuristic argument for the rate of M-estimators.
Although we did for a special M-estimator which corresponded to mθ := I(θ − 1 ≤ x ≤ θ + 1),
the ideas are fairly general. The most important ingredient is the basic inequality (9.4). The LHS
P(mθ0 − mθ̂n

) is bounded from below by an assumption on the second derivative of θ 7→ Pmθ at
θ = θ0. The RHS can be understood by calculating

E{mθ(X1) − mθ0(X1)}2.

For the specific choice of mθ(x) = I(θ − 1 ≤ x ≤ θ + 1), it turned out

E{mθ(X1) − mθ0(X1)}2 ≤ C|θ − θ0|.

For other mθ, the RHS might be different (for example, it is common to have C(θ−θ0)2 on the RHS).
Plugging these bounds in the basic inequality will yield an inequality involving |̂θn−θ0| and n, which
can be solved to get explicit rates (such as n−1/3) in this problem. This heuristic will be justified next
time. Before concluding this section, let us state a result from van der Vaart and Wellner (1996) on
the rate of convergence of M-estimators. We will formally prove this result later but, based on the
above heuristics, its conclusion should be quite obvious.

Theorem 1.2 (Page 294 of van der Vaart and Wellner (1996)). Let X1, . . . , Xn be iid observations
from a distribution P. Suppose Θ ⊆ R is an open set and let mθ, θ ∈ Θ be a collection of real-valued
functions on X that are indexed by Θ. Suppose there exist α > 0 and a function M on X with
PM2 < ∞ for which

|mθ1(x) − mθ2(x)| ≤ M(x)|θ1 − θ2|
α for all θ1, θ2 ∈ Θ. (9.15)

Let θ̂n and θ0 denote maximizers of Pnmθ and Pmθ over θ ∈ Θ. If θ 7→ Pmθ has two derivatives at θ0

with the second derivative strictly negative, then

|̂θn − θ0| = OP(n−1/(4−2α)). (9.16)

Heuristic Argument. We use the heuristics summarized above to justify (9.16) based on the as-
sumptions made in the theorem. Note that assumption (9.15) implies that

E{mθ(X1) − mθ0(X1)}2 ≤ E{M2(X1)|θ − θ0|
2α} = |θ − θ0|

2αPM2.

This suggests the heuristic

(Pn − P)(mθ̂n
− mθ0) .P n−1/2 |̂θn − θ0|

α.

Combining with the basic inequality and the lower bound C(̂θn − θ0)2 on P(mθ0 − mθ̂n
), we obtain

(̂θn − θ0)2 .P n−1/2 |̂θn − θ0|
α,

which yields

|̂θn − θ0| .P n−1/(4−2α)

When α = 1, Theorem 1.2 gives the usual n−1/2 rate for |̂θn − θ0|.
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