MATH 281C: Mathematical Statistics

Lecture 8

Let us start by recalling Dudley’s entropy bound from the previous class. Suppose (7,d) is a
metric space and {X;, t € T'} is a separable stochastic process satisfying

2
—u
P(Xs — Xil > u) <2 forallu >0 and s,reT.
(X5 — Xi| = u) eXp{Zdz(s, [)} or all u and s
Then for every 1o € T,
D/2
Esup|X, - X, | < C log M(e, T, d)de,

teT 0

where D denotes the diameter of the metric space (7', d).
We applied this bound to control the expected suprema of Rademacher averages. Suppose T is
a subset of R". Then

E stg) % ,Z:; €ti| < C joﬂn \/log(e, T U {0},d,)de,
where o, = sup,cz |[tlln, lltll, = /(1/n) X2, tl.z and d,,(s, 1) = ||s — f||,. Note that if T is finite, then
log M(e, T U{0},d,) <1 +log|T|,
and hence
E sup L Zn: €ti| < C +/log(e|T|) max ||f]|,-
el | Vn el

This coincides with the bound on the expected maxima of sub-Gaussian random variables.
We next apply Dudley’s entropy bound together with symmetrization to obtain our main bound
for the expected suprema of an empirical process.

1 Main Bound on the Expected Suprema of Empirical Processes
Consider the usual empirical process setup. Our goal is to obtain upper bounds on A where

A = Esup
feF

1 n
N Dl - Ef(Xi)}‘ =Esupn'?|P,f - Pfl.

n =1 feF



By symmetrization,

1 n
A <2E — > {fX)-E (Xi)}‘
bl 2/ S
1 n
=2E|E —_— 3 X,-)’X,...,Xn}].
RE RN

The inner expectation above can be controlled via Dudley’s entropy bound, giving

l n
E{sup — e-f(X-)‘
fE'F \/ﬁ i=1 l l

O
Xl,...,Xn} < cf Vlog M(e, F(X1,...,X,) U{0},d,)de,
0

where F(X1,...,X,) = {(f(X1),..., f(X})) : f € F}isasubset of R", o, = SUP feg VP,.f?* and d,
is the Euclidean metric on R” scaled by n~!/2.
We write

M(e, F(X1,...,X,) U {0}, dy) = M(e, F U {0}, L*(P,)),

where L2(P,) refers to the pseudometric on # given by

1 o . 2
(f,8) J - ;{fom — g(X)P2.

By the trivial inequality
M(e, F U{0}, LA (P,)) < 1 + M(e, F, L*(Py)).

We thus obtain

n

1
E{;g;z ) /(X))

Taking expectations on both sides yields

Supfe‘F V Pnf2
f \/1 +log M(e, F, L*(Py)) de.

Xl,...,Xn}SC
0

Sup peg \ Puf?
Esupn!/?|P,f - Pf| < CE{f

\/1 +log M(e, F, L*(P,)) de}.
feF

0
This is our first bound on the expected supremum of an empirical process. We can simplify this
bound further using envelopes. We say that a non-negative function F : X — [0, o) is an envelope
for the class F if

sup |f(x)| < F(x) forevery x € X.
feF



It is then clear that sup feF VP, f* < /P,F? so that

SUp rer N Puf?
Esupn'2|P, f - Pf] < CE{f \/1 +log M(e, 7, L*(Py)) df}

feF 0

N
CE{f \/1 +log M(e, F, L3(P,)) de}
0
1
CE{ \P,F? f \/1 +log M(e VP, F2,F,L*(Py)) de}
0
1
< CE{ \/Panf \/1 + log sup M(e \QF2, 7, L*(Q)) de}
0 0
1
C{f \/1 + log sup M(e VQF2,F, L2(Q)) de}]E P,F?
0 o

non—random

1
< C{f \/1 + log sup M(e VQF2, F, L*(Q)) de} VEP, F?
0 0
1
= C{f \/1 + log sup M(e \QF2, 7, L*(Q)) de} VPF2.
0 0

IA

IA

IA

In the above chain of inequalities, the supremum is over all probability measures Q supported on a
set of cardinality at most n in X. Also PF 2 stands for EF%(X)).

Theorem 1.1. Let F be an envelop for the class # such that PF? < co. Then

Esup(n'?|P,f = Pf1) < Cl\Fllp2p)J (F, F),
feF

where

1
J(F,F) := f \/1 + log sup M(e VQOF2,F, L2(Q)) de.
0 0

1.1 Application to Boolean function classes with finite VC dimension

Let # be a Boolean function class with finite VC dimension, and let D denote its VC dimension.
Recall that the VC dimension is defined as the maximum cardinality of a set in X that is shattered
by the class . An important fact about VC dimension is the Sauer-Shelah-Vapnik-Chervonenkis
lemma, which states that for every n > 1 and x1,...,x, € X,

IT(xl,...,xn)IS(g)+(’:)+---+(g), (8.1

where F (x1,...,x,) = {(f(x1),..., f(xy) : f € F}. Note that (Z) in (8.1) is taken to be 0 if n < k.
The RHS of (8.1) equals 2” if n < D and is bounded from above by (en/D)P if n > D.
We have seen previously that

E sup(n'/?|P,f — Pf]) < C \/Dlog(en/D) forn > D, (8.2)
feF



and this bound was proved by symmetrization and the elementary bound on Rademacher averages.
This elementary bound involved the cardinality of ¥ (X1, ..., X;;) which we bound via (8.1).
It turns out that the logarithmic factor is redundant in (8.2), and one actually has the bound

E sup(n'/?|P,f — Pf]) < CD'?. (8.3)
feF

This can be deduced as a consequence of Theorem 1.1 as we will demonstrate in this section. Since
Theorem 1.1 gives bounds in terms of packing numbers, it becomes necessary to relate the packing
numbers of ¥ to its VC dimension. This is done in the following important result due to Dudley.

Theorem 1.2. Suppose ¥ is a Boolean function class with VC dimension D. Then
5 cl oD
sup M(e, ¥, L(Q)) < (—) forall0 < e < 1. (8.4)
0 €

Here ¢y, ¢ > 0 are universal constants, and the supremum is taken over all probability measures Q
on X.

Note that Theorem 1.2 gives upper bounds for the e-packing numbers when € < 1. Since the
functions in F take only values 0 and 1, it is clear that M(e, 7, L*(Q)) = 1 for all € > 1.

Proof. Fix 0 < € < 1 and a probability measure Q on X. Write N = M(e, F, L*(Q)) and let
{fi,.-.,fn} be a maximal e-separated subset of ¥ in the L*(Q) metric. This means that for every
1<i#j<N,

5= < [~ fipag = [ 1= Fpao = 01+ £,
Let Z,,Z,, ... be iid random variables from Q. Then
BUAZ) = FZ0) = 1 - QI # f) <16
By independence, it holds for every k > 1 that
BUAZ) = FZ00 fi(Z2) = F{Z) s 20 = FiZ0)) < (1 = 6

In other words, the probability that f; and f; agree on every Zi, ..., Z; is at most (1 — Ok < e ke,
By the union bound,

C N NV

P{(fi(Z1), ..., [i(Z) = (fi(Z1),..., fi(Z)) forsome 1 <i< j< N} < ) (1-9)"< e

It follows immediately that

N2
P{F(Z1,....Z)| = N} = 1 - Te_k‘s.

If we take

k= VlogN" S 2logN

5 25 (8.5)



then P{|F (Zi,...,Z)| = N} > 1/2 > 0. For this particular choice of k, there exists a subset
{z1,..., 2} such that

k k k
NS|7:(Zl,...,Zk)|S(0)+(1)+---+(D), (8.6)
where the second inequality is due to the Sauer-Shelah-VC lemma.
Caske 1. If k < D, then (8.6) gives
2 D
M(e, F,L*(Q)) = N <2P < (—) :
€
which proves (8.4).
Caskg 2. Assume k > D. Together, (8.6) and (8.5) imply
D D
N < (ﬁc) < (3elogN) .
D 6D
It follows that
3elogN  Ge 6e
NP < = 2 Jog N1/@D) < 26 N1/eD).
=TS s % =%

where we used log x < x (Vx > 1) in the last step. Consequently, N < (6e/ 5)*P and hence

6e 6e )D B (36)2D

N < (% log(6e/5))D = (F 46 6

where the last inequality is based on the bound log x < x/4 for x > 9.
Combining the two cases completes the proof. O

The bound (8.3) immediately follows from Theorems 1.1 and 1.2 as shown below.

Theorem 1.3. Suppose ¥ is a Boolean class of functions with VC dimension D. Then

Esupanf—PfISC\/g. (8.7)

feF

Proof. Since ¥ is a Boolean class, we can apply Theorem 1.1 with F(x) = 1. This gives

1
Esup |P,.f — Pf| < £J(1,7:) with J(1,F) = f 1 +log sup M(e, F, L2(Q)) de.
feF \n 0 0

The packing numbers above can be bounded by Theorem 1.2, implying

1 3e
J(l,?’”)sf ‘/1+2Dlog—2de.
0 €

Given A > e and v > 0, we wish to bound

1 © J1+loge
f JT+ viog(Aje) de < Ay f RERL L
0 A €



An integration by parts gives

* 1 +loge
f —2ng_
A €

de

V1 +loge
€

® 1f°° 1
+_ —
A 2Ja e€.\1+loge
log(eA 1 ™ +J1+1o
< —"g(e)+—f NI OB e (A > o),
A 2 A 62

from which it follows

* 1 +loge 2 +/log(eA
f\/ g€ e < g(eA)

A 62 - A ’
Consequently,
J(1,F)<cD'?

for some absolute constant C > 0. Putting together the pieces completes the proof of Theorem 1.3.
O

The following examples are immediate applications of Theorem 1.3.

Example 1.1. Suppose X1, ..., X, are iid real-valued random variables having a common CDF F.
Let F,, denote the empirical CDF. Then Theorem 1.3 immediately gives

Esup |F,(x) — F(x)| < %

xeR

This is because the Boolean class # := {/(_« ) : x € R} has VC dimension 1.
One can also obtain a high probability upper bound on sup g |F,(x) — F(x)| using the bounded
differences inequality that we discussed previously. Combined with above bound, it gives

c 2log(1
sup [Fu(x) = FOOl < = + 1| 2208/ i probability > 1 - a.
xeR \n n

Example 1.2 (Classification with VC classes). Consider the classification problem where we ob-
serve iid data (X1, Y1),...,(X,,Y,) with X; € X and Y; € {0, 1}. Let C be class of functions from X
to {0, 1} (these are classifiers). For a classifier g, define its test error and training error by

1 n
L(g) = P{Y, # g(X1)} and L,(g) = - Zl{g(Xi) # Yil,
i=1

respectively. The ERM (empirical risk minimization) classifier is given by

gn = argmin L,(g).
geC

It is usually of interest to understand the test error of g, relative to the best test error in the class C,
ie.

L(gn) — inf L(g).
geC



If ¢* minimizes L(g) over g € C, then we can bound the above discrepancy (excess risk) above as

L(gn) — L(g") = L(gn) — Lu(8n) + Ln(8n) — La(g") + La(g") — L(g")
< L@n) - Ln@n) + Ln(g*) - L(g*)

< 2sup|L,(g) — L(g)I.
geC

The last inequality above can sometimes be quite loose (we will look at improved bounds later).
The term above can be written as sup feF |P.f — Pf|, where

F = {(x,y) = I{g(x) # y} : g € C),

P, is the empirical distribution of (X;, Y;),i = 1,...,n, and P is the distribution of (Xy, ¥).
Using the bounded differences inequality and the bound given by Theorem 1.3, we obtain that
for every a € (0, 1),

L@ - L(g") < C\/VC;ET) N \/SIOg(l/a)

n

with probability at least 1 — a.

It can further be shown that VC(¥) < VC(C). To see this, it suffices to argue that if ¥ can
shatter (x1,y1), (x2,¥2), ..., (X4, ¥n), then C can shatter xy, ..., x,. For this, let 51, ..., n, be arbitrary
in {0, 1}. We need to obtain a function g € C for which g(x;) = ;. Define 61, ...,, by

5,‘ = I]il(y,' = 0) + (1 - ni)l(yl' = 1)

Because ¥ can shatter (x1, y1), (x2,¥2), ..., (x,, ¥), there exists a function f € ¥ with f(x;,y;) = 6;
fori=1,...,n If f(x,y) = I{g(x) # y} for some g € C, then

nil(yi =0)+ (A —n)l(y; = 1) = Hg(x;) # yi}

indicating g(x;) = ;. This proves that C shatters xi, .. ., x,, and hence proves the claim.
Finally, we conclude that for every a € (0, 1),

L@n)_L(g*)SC\/V(;(C)+ \/810g(1/a)

n

with probability at least 1 — . Thus, as long as VC(C) = o(n), the test error of g, relative to the best
test error in C converges to zero as n — co.
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