
MATH 281C: Mathematical Statistics

Lecture 8

Let us start by recalling Dudley’s entropy bound from the previous class. Suppose (T, d) is a
metric space and {Xt, t ∈ T } is a separable stochastic process satisfying

P
(
|Xs − Xt| ≥ u

)
≤ 2 exp

{
−u2

2d2(s, t)

}
for all u ≥ 0 and s, t ∈ T.

Then for every t0 ∈ T ,

E sup
t∈T
|Xt − Xt0 | ≤ C

∫ D/2

0

√
log M(ε,T, d) dε,

where D denotes the diameter of the metric space (T, d).
We applied this bound to control the expected suprema of Rademacher averages. Suppose T is

a subset of Rn. Then

E sup
t∈T

∣∣∣∣∣∣ 1
√

n

n∑
i=1

εiti

∣∣∣∣∣∣ ≤ C
∫ σn

0

√
log(ε,T ∪ {0}, dn) dε,

where σn = supt∈T ‖t‖n, ‖t‖n =

√
(1/n)

∑n
i=1 t2

i and dn(s, t) = ‖s − t‖n. Note that if T is finite, then

log M(ε,T ∪ {0}, dn) ≤ 1 + log |T |,

and hence

E sup
t∈T

∣∣∣∣∣∣ 1
√

n

n∑
i=1

εiti

∣∣∣∣∣∣ ≤ C
√

log(e|T |) max
t∈T
‖t‖n.

This coincides with the bound on the expected maxima of sub-Gaussian random variables.
We next apply Dudley’s entropy bound together with symmetrization to obtain our main bound

for the expected suprema of an empirical process.

1 Main Bound on the Expected Suprema of Empirical Processes

Consider the usual empirical process setup. Our goal is to obtain upper bounds on ∆ where

∆ := E sup
f∈F

∣∣∣∣∣∣ 1
√

n

n∑
i=1

{ f (Xi − E f (Xi)}

∣∣∣∣∣∣ = E sup
f∈F

n1/2|Pn f − P f |.
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By symmetrization,

∆ ≤ 2E sup
f∈F

∣∣∣∣∣∣ 1
√

n

n∑
i=1

{ f (Xi) − E f (Xi)}

∣∣∣∣∣∣
= 2E

[
E

{
sup
f∈F

∣∣∣∣∣ 1
√

n

n∑
i=1

εi f (Xi)
∣∣∣∣∣
∣∣∣∣∣∣X1, . . . , Xn

}]
.

The inner expectation above can be controlled via Dudley’s entropy bound, giving

E

{
sup
f∈F

∣∣∣∣∣ 1
√

n

n∑
i=1

εi f (Xi)
∣∣∣∣∣
∣∣∣∣∣∣X1, . . . , Xn

}
≤ C

∫ σn

0

√
log M(ε,F (X1, . . . , Xn) ∪ {0}, dn) dε,

where F (X1, . . . , Xn) = {( f (X1), . . . , f (Xn)) : f ∈ F } is a subset of Rn, σn = sup f∈F

√
Pn f 2 and dn

is the Euclidean metric on Rn scaled by n−1/2.
We write

M(ε,F (X1, . . . , Xn) ∪ {0}, dn) = M(ε,F ∪ {0}, L2(Pn)),

where L2(Pn) refers to the pseudometric on F given by

( f , g) 7→

√√
1
n

n∑
i=1

{ f (Xi) − g(Xi)}2.

By the trivial inequality

M(ε,F ∪ {0}, L2(Pn)) ≤ 1 + M(ε,F , L2(Pn)).

We thus obtain

E

{
sup
f∈F

∣∣∣∣∣ 1
√

n

n∑
i=1

εi f (Xi)
∣∣∣∣∣
∣∣∣∣∣∣X1, . . . , Xn

}
≤ C

∫ sup f∈F

√
Pn f 2

0

√
1 + log M(ε,F , L2(Pn)) dε.

Taking expectations on both sides yields

E sup
f∈F

n1/2|Pn f − P f | ≤ CE
{∫ sup f∈F

√
Pn f 2

0

√
1 + log M(ε,F , L2(Pn)) dε

}
.

This is our first bound on the expected supremum of an empirical process. We can simplify this
bound further using envelopes. We say that a non-negative function F : X → [0,∞) is an envelope
for the class F if

sup
f∈F
| f (x)| ≤ F(x) for every x ∈ X.
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It is then clear that sup f∈F

√
Pn f 2 ≤

√
PnF2 so that

E sup
f∈F

n1/2|Pn f − P f | ≤ CE
{∫ sup f∈F

√
Pn f 2

0

√
1 + log M(ε,F , L2(Pn)) dε

}

≤ CE
{∫ √PnF2

0

√
1 + log M(ε,F , L2(Pn)) dε

}
≤ CE

{√
PnF2

∫ 1

0

√
1 + log M(ε

√
PnF2,F , L2(Pn)) dε

}
≤ CE

{√
PnF2

∫ 1

0

√
1 + log sup

Q
M(ε

√
QF2,F , L2(Q)) dε

}
≤ C

{∫ 1

0

√
1 + log sup

Q
M(ε

√
QF2,F , L2(Q)) dε

}
︸                                                        ︷︷                                                        ︸

non−random

E
√

PnF2

≤ C
{∫ 1

0

√
1 + log sup

Q
M(ε

√
QF2,F , L2(Q)) dε

}√
EPnF2

= C
{∫ 1

0

√
1 + log sup

Q
M(ε

√
QF2,F , L2(Q)) dε

}√
PF2.

In the above chain of inequalities, the supremum is over all probability measures Q supported on a
set of cardinality at most n in X. Also PF2 stands for EF2(X1).

Theorem 1.1. Let F be an envelop for the class F such that PF2 < ∞. Then

E sup
f∈F

(
n1/2|Pn f − P f |

)
≤ C‖F‖L2(P)J(F,F ),

where

J(F,F ) :=
∫ 1

0

√
1 + log sup

Q
M(ε

√
QF2,F , L2(Q)) dε.

1.1 Application to Boolean function classes with finite VC dimension

Let F be a Boolean function class with finite VC dimension, and let D denote its VC dimension.
Recall that the VC dimension is defined as the maximum cardinality of a set in X that is shattered
by the class F . An important fact about VC dimension is the Sauer-Shelah-Vapnik-Chervonenkis
lemma, which states that for every n ≥ 1 and x1, . . . , xn ∈ X,

|F (x1, . . . , xn)| ≤
(
n
0

)
+

(
n
1

)
+ · · · +

(
n
D

)
, (8.1)

where F (x1, . . . , xn) = {( f (x1), . . . , f (xn)) : f ∈ F }. Note that
(
n
k

)
in (8.1) is taken to be 0 if n < k.

The RHS of (8.1) equals 2D if n < D and is bounded from above by (en/D)D if n ≥ D.
We have seen previously that

E sup
f∈F

(
n1/2|Pn f − P f |

)
≤ C

√
D log(en/D) for n ≥ D, (8.2)
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and this bound was proved by symmetrization and the elementary bound on Rademacher averages.
This elementary bound involved the cardinality of F (X1, . . . , Xn) which we bound via (8.1).

It turns out that the logarithmic factor is redundant in (8.2), and one actually has the bound

E sup
f∈F

(
n1/2|Pn f − P f |

)
≤ CD1/2. (8.3)

This can be deduced as a consequence of Theorem 1.1 as we will demonstrate in this section. Since
Theorem 1.1 gives bounds in terms of packing numbers, it becomes necessary to relate the packing
numbers of F to its VC dimension. This is done in the following important result due to Dudley.

Theorem 1.2. Suppose F is a Boolean function class with VC dimension D. Then

sup
Q

M(ε,F , L2(Q)) ≤
(c1

ε

)c2D
for all 0 < ε ≤ 1. (8.4)

Here c1, c2 > 0 are universal constants, and the supremum is taken over all probability measures Q
on X.

Note that Theorem 1.2 gives upper bounds for the ε-packing numbers when ε ≤ 1. Since the
functions in F take only values 0 and 1, it is clear that M(ε,F , L2(Q)) = 1 for all ε ≥ 1.

Proof. Fix 0 < ε ≤ 1 and a probability measure Q on X. Write N = M(ε,F , L2(Q)) and let
{ f1, . . . , fN} be a maximal ε-separated subset of F in the L2(Q) metric. This means that for every
1 ≤ i , j ≤ N,

δ := ε2 <

∫
( fi − f j)2dQ =

∫
I( fi , f j)dQ = QI( fi , f j).

Let Z1,Z2, . . . be iid random variables from Q. Then

P
{
fi(Z1) = f j(Z1)

}
= 1 − QI( fi , f j) < 1 − δ.

By independence, it holds for every k ≥ 1 that

P
{
fi(Z1) = f j(Z1), fi(Z2) = f j(Z2), . . . , fi(Zk) = f j(Zk)

}
< (1 − δ)k.

In other words, the probability that fi and f j agree on every Z1, . . . ,Zk is at most (1 − δ)k ≤ e−kε2
.

By the union bound,

P
{
( fi(Z1), . . . , fi(Zk)) = ( f j(Z1), . . . , f j(Zk)) for some 1 ≤ i < j ≤ N

}
≤

(
N
2

)
(1 − δ)k ≤

N2

2
e−kδ.

It follows immediately that

P
{
|F (Z1, . . . ,Zk)| ≥ N

}
≥ 1 −

N2

2
e−kδ.

If we take

k =

⌈2 log N
δ

⌉
≥

2 log N
δ

, (8.5)
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then P{|F (Z1, . . . ,Zk)| ≥ N} ≥ 1/2 > 0. For this particular choice of k, there exists a subset
{z1, . . . , zk} such that

N ≤ |F (z1, . . . , zk)| ≤
(
k
0

)
+

(
k
1

)
+ · · · +

(
k
D

)
, (8.6)

where the second inequality is due to the Sauer-Shelah-VC lemma.
Case 1. If k ≤ D, then (8.6) gives

M(ε,F , L2(Q)) = N ≤ 2D ≤

(2
ε

)D
,

which proves (8.4).
Case 2. Assume k ≥ D. Together, (8.6) and (8.5) imply

N ≤
(ek

D

)D
≤

(3e log N
δD

)D
.

It follows that

N1/D ≤
3e log N
δD

=
6e
δ

log N1/(2D) ≤
6e
δ

N1/(2D),

where we used log x ≤ x (∀x ≥ 1) in the last step. Consequently, N ≤ (6e/δ)2D and hence

N ≤
(6e
δ

log(6e/δ)
)D
≤

(6e
δ

6e
4δ

)D
=

(3e
δ

)2D
,

where the last inequality is based on the bound log x ≤ x/4 for x ≥ 9.
Combining the two cases completes the proof. �

The bound (8.3) immediately follows from Theorems 1.1 and 1.2 as shown below.

Theorem 1.3. Suppose F is a Boolean class of functions with VC dimension D. Then

E sup
f∈F
|Pn f − P f | ≤ C

√
D
n
. (8.7)

Proof. Since F is a Boolean class, we can apply Theorem 1.1 with F(x) ≡ 1. This gives

E sup
f∈F
|Pn f − P f | ≤

C
√

n
J(1,F ) with J(1,F ) =

∫ 1

0

√
1 + log sup

Q
M(ε,F , L2(Q)) dε.

The packing numbers above can be bounded by Theorem 1.2, implying

J(1,F ) ≤
∫ 1

0

√
1 + 2D log

3e
ε2 dε.

Given A ≥ e and v > 0, we wish to bound∫ 1

0

√
1 + v log(A/ε) dε ≤ A

√
v
∫ ∞

A

√
1 + log ε
ε2 dε.
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An integration by parts gives∫ ∞

A

√
1 + log ε
ε2 dε = −

√
1 + log ε
ε

∣∣∣∣∣∣∞
A

+
1
2

∫ ∞

A

1

ε2
√

1 + log ε
dε

≤

√
log(eA)

A
+

1
2

∫ ∞

A

√
1 + log ε
ε2 dε (if A ≥ e),

from which it follows ∫ ∞

A

√
1 + log ε
ε2 dε ≤

2
√

log(eA)
A

.

Consequently,

J(1,F ) ≤ CD1/2

for some absolute constant C > 0. Putting together the pieces completes the proof of Theorem 1.3.
�

The following examples are immediate applications of Theorem 1.3.

Example 1.1. Suppose X1, . . . , Xn are iid real-valued random variables having a common CDF F.
Let Fn denote the empirical CDF. Then Theorem 1.3 immediately gives

E sup
x∈R
|Fn(x) − F(x)| ≤

C
√

n
.

This is because the Boolean class F := {I(−∞,x] : x ∈ R} has VC dimension 1.
One can also obtain a high probability upper bound on supx∈R |Fn(x) − F(x)| using the bounded

differences inequality that we discussed previously. Combined with above bound, it gives

sup
x∈R
|Fn(x) − F(x)| ≤

C
√

n
+

√
2 log(1/α)

n
with probability ≥ 1 − α.

Example 1.2 (Classification with VC classes). Consider the classification problem where we ob-
serve iid data (X1,Y1), . . . , (Xn,Yn) with Xi ∈ X and Yi ∈ {0, 1}. Let C be class of functions from X
to {0, 1} (these are classifiers). For a classifier g, define its test error and training error by

L(g) = P{Y1 , g(X1)} and Ln(g) =
1
n

n∑
i=1

I{g(Xi) , Yi},

respectively. The ERM (empirical risk minimization) classifier is given by

ĝn := argmin
g∈C

Ln(g).

It is usually of interest to understand the test error of ĝn relative to the best test error in the class C,
i.e.

L(̂gn) − inf
g∈C

L(g).
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If g∗ minimizes L(g) over g ∈ C, then we can bound the above discrepancy (excess risk) above as

L(̂gn) − L(g∗) = L(̂gn) − Ln(̂gn) + Ln(̂gn) − Ln(g∗) + Ln(g∗) − L(g∗)

≤ L(̂gn) − Ln(̂gn) + Ln(g∗) − L(g∗)

≤ 2 sup
g∈C
|Ln(g) − L(g)|.

The last inequality above can sometimes be quite loose (we will look at improved bounds later).
The term above can be written as sup f∈F |Pn f − P f |, where

F :=
{
(x, y) 7→ I{g(x) , y} : g ∈ C

}
,

Pn is the empirical distribution of (Xi,Yi), i = 1, . . . , n, and P is the distribution of (X1,Y1).
Using the bounded differences inequality and the bound given by Theorem 1.3, we obtain that

for every α ∈ (0, 1),

L(̂gn) − L(g∗) ≤ C

√
VC(F )

n
+

√
8 log(1/α)

n

with probability at least 1 − α.
It can further be shown that VC(F ) ≤ VC(C). To see this, it suffices to argue that if F can

shatter (x1, y1), (x2, y2), . . . , (xn, yn), then C can shatter x1, . . . , xn. For this, let η1, . . . , ηn be arbitrary
in {0, 1}. We need to obtain a function g ∈ C for which g(xi) = ηi. Define δ1, . . . , δn by

δi = ηiI(yi = 0) + (1 − ηi)I(yi = 1).

Because F can shatter (x1, y1), (x2, y2), . . . , (xn, yn), there exists a function f ∈ F with f (xi, yi) = δi

for i = 1, . . . , n. If f (x, y) = I{g(x) , y} for some g ∈ C, then

ηiI(yi = 0) + (1 − ηi)I(yi = 1) = I{g(xi) , yi},

indicating g(xi) = ηi. This proves that C shatters x1, . . . , xn, and hence proves the claim.
Finally, we conclude that for every α ∈ (0, 1),

L(̂gn) − L(g∗) ≤ C

√
VC(C)

n
+

√
8 log(1/α)

n

with probability at least 1−α. Thus, as long as VC(C) = o(n), the test error of ĝn relative to the best
test error in C converges to zero as n→ ∞.
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