MATH 281C: Mathematical Statistics

Lecture 8

Let us start by recalling Dudley's entropy bound from the previous class. Suppose (T, d) is a metric space and $\left\{X_{t}, t \in T\right\}$ is a separable stochastic process satisfying

$$
\mathbb{P}\left(\left|X_{s}-X_{t}\right| \geq u\right) \leq 2 \exp \left\{\frac{-u^{2}}{2 d^{2}(s, t)}\right\} \text { for all } u \geq 0 \text { and } s, t \in T
$$

Then for every $t_{0} \in T$,

$$
\mathbb{E} \sup _{t \in T}\left|X_{t}-X_{t_{0}}\right| \leq C \int_{0}^{D / 2} \sqrt{\log M(\epsilon, T, d)} \mathrm{d} \epsilon,
$$

where D denotes the diameter of the metric space (T, d).
We applied this bound to control the expected suprema of Rademacher averages. Suppose T is a subset of \mathbb{R}^{n}. Then

$$
\mathbb{E} \sup _{t \in T}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} t_{i}\right| \leq C \int_{0}^{\sigma_{n}} \sqrt{\log \left(\epsilon, T \cup\{0\}, d_{n}\right)} \mathrm{d} \epsilon,
$$

where $\sigma_{n}=\sup _{t \in T}\|t\|_{n},\|t\|_{n}=\sqrt{(1 / n) \sum_{i=1}^{n} t_{i}^{2}}$ and $d_{n}(s, t)=\|s-t\|_{n}$. Note that if T is finite, then

$$
\log M\left(\epsilon, T \cup\{0\}, d_{n}\right) \leq 1+\log |T|
$$

and hence

$$
\mathbb{E} \sup _{t \in T}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} t_{i}\right| \leq C \sqrt{\log (e|T|)} \max _{t \in T}\|t\|_{n}
$$

This coincides with the bound on the expected maxima of sub-Gaussian random variables.
We next apply Dudley's entropy bound together with symmetrization to obtain our main bound for the expected suprema of an empirical process.

1 Main Bound on the Expected Suprema of Empirical Processes

Consider the usual empirical process setup. Our goal is to obtain upper bounds on Δ where

$$
\Delta:=\mathbb{E} \sup _{f \in \mathcal{F}} \left\lvert\, \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{f\left(X_{i}-\mathbb{E} f\left(X_{i}\right)\right\}\left|=\mathbb{E} \sup _{f \in \mathcal{F}} n^{1 / 2}\right| P_{n} f-P f \mid .\right.\right.
$$

By symmetrization,

$$
\begin{aligned}
\Delta & \leq 2 \mathbb{E} \sup _{f \in \mathcal{F}}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{f\left(X_{i}\right)-\mathbb{E} f\left(X_{i}\right)\right\}\right| \\
& =2 \mathbb{E}\left[\mathbb{E}\left\{\left.\sup _{f \in \mathcal{F}}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right| \right\rvert\, X_{1}, \ldots, X_{n}\right\}\right] .
\end{aligned}
$$

The inner expectation above can be controlled via Dudley's entropy bound, giving

$$
\mathbb{E}\left\{\left.\sup _{f \in \mathcal{F}}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right| \right\rvert\, X_{1}, \ldots, X_{n}\right\} \leq C \int_{0}^{\sigma_{n}} \sqrt{\log M\left(\epsilon, \mathcal{F}\left(X_{1}, \ldots, X_{n}\right) \cup\{0\}, d_{n}\right)} \mathrm{d} \epsilon,
$$

where $\mathcal{F}\left(X_{1}, \ldots, X_{n}\right)=\left\{\left(f\left(X_{1}\right), \ldots, f\left(X_{n}\right)\right): f \in \mathcal{F}\right\}$ is a subset of $\mathbb{R}^{n}, \sigma_{n}=\sup _{f \in \mathcal{F}} \sqrt{P_{n} f^{2}}$ and d_{n} is the Euclidean metric on \mathbb{R}^{n} scaled by $n^{-1 / 2}$.

We write

$$
M\left(\epsilon, \mathcal{F}\left(X_{1}, \ldots, X_{n}\right) \cup\{0\}, d_{n}\right)=M\left(\epsilon, \mathcal{F} \cup\{0\}, L^{2}\left(P_{n}\right)\right),
$$

where $L^{2}\left(P_{n}\right)$ refers to the pseudometric on \mathcal{F} given by

$$
(f, g) \mapsto \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left\{f\left(X_{i}\right)-g\left(X_{i}\right)\right\}^{2}} .
$$

By the trivial inequality

$$
M\left(\epsilon, \mathcal{F} \cup\{0\}, L^{2}\left(P_{n}\right)\right) \leq 1+M\left(\epsilon, \mathcal{F}, L^{2}\left(P_{n}\right)\right) .
$$

We thus obtain

$$
\mathbb{E}\left\{\sup _{f \in \mathcal{F}} \left\lvert\, \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} f\left(X_{i}\right)\right. \| X_{1}, \ldots, X_{n}\right\} \leq C \int_{0}^{\sup _{f \in \mathcal{F}} \sqrt{P_{n} f^{2}}} \sqrt{1+\log M\left(\epsilon, \mathcal{F}, L^{2}\left(P_{n}\right)\right)} \mathrm{d} \epsilon .
$$

Taking expectations on both sides yields

$$
\mathbb{E} \sup _{f \in \mathcal{F}} n^{1 / 2}\left|P_{n} f-P f\right| \leq C \mathbb{E}\left\{\int_{0}^{\sup _{f \in \mathcal{F}} \sqrt{P_{n} f^{2}}} \sqrt{1+\log M\left(\epsilon, \mathcal{F}, L^{2}\left(P_{n}\right)\right)} \mathrm{d} \epsilon\right\} .
$$

This is our first bound on the expected supremum of an empirical process. We can simplify this bound further using envelopes. We say that a non-negative function $F: \mathcal{X} \rightarrow[0, \infty)$ is an envelope for the class \mathcal{F} if

$$
\sup _{f \in \mathcal{F}}|f(x)| \leq F(x) \text { for every } x \in \mathcal{X} .
$$

It is then clear that $\sup _{f \in \mathcal{F}} \sqrt{P_{n} f^{2}} \leq \sqrt{P_{n} F^{2}}$ so that

$$
\begin{aligned}
\mathbb{E} \sup _{f \in \mathcal{F}} n^{1 / 2}\left|P_{n} f-P f\right| & \left.\leq C \mathbb{E}\left\{\int_{0}^{\sup _{f \in \mathcal{F}} \sqrt{P_{n} f^{2}}} \sqrt{1+\log M\left(\epsilon, \mathcal{F}, L^{2}\left(P_{n}\right)\right.}\right) \mathrm{d} \epsilon\right\} \\
& \leq C \mathbb{E}\left\{\int_{0}^{\sqrt{P_{n} F^{2}}} \sqrt{1+\log M\left(\epsilon, \mathcal{F}, L^{2}\left(P_{n}\right)\right)} \mathrm{d} \epsilon\right\} \\
& \left.\leq C \mathbb{E}\left\{\sqrt{P_{n} F^{2}} \int_{0}^{1} \sqrt{1+\log M\left(\epsilon \sqrt{P_{n} F^{2}}, \mathcal{F}, L^{2}\left(P_{n}\right)\right.}\right) \mathrm{d} \epsilon\right\} \\
& \leq C \mathbb{E}\left\{\sqrt{P_{n} F^{2}} \int_{0}^{1} \sqrt{1+\log \sup _{Q} M\left(\epsilon \sqrt{Q F^{2}}, \mathcal{F}, L^{2}(Q)\right)} \mathrm{d} \epsilon\right\} \\
& \leq C\{\underbrace{\left.\int_{0}^{1} \sqrt{1+\log \sup _{Q} M\left(\epsilon \sqrt{Q F^{2}}, \mathcal{F}, L^{2}(Q)\right)} \mathrm{d} \epsilon\right\} \mathbb{E} \sqrt{P_{n} F^{2}}}_{0} \\
& \leq C\left\{\int_{0}^{1} \sqrt{1+\log \sup _{Q} M\left(\epsilon \sqrt{Q F^{2}}, \mathcal{F}, L^{2}(Q)\right)} \mathrm{d} \epsilon\right\} \sqrt{\mathbb{E} P_{n} F^{2}} \\
& =C\left\{\int_{0}^{1} \sqrt{1+\log \sup _{Q} M\left(\epsilon \sqrt{Q F^{2}}, \mathcal{F}, L^{2}(Q)\right)} \mathrm{d} \epsilon\right\} \sqrt{P F^{2}}
\end{aligned}
$$

In the above chain of inequalities, the supremum is over all probability measures Q supported on a set of cardinality at most n in \mathcal{X}. Also $P F^{2}$ stands for $\mathbb{E} F^{2}\left(X_{1}\right)$.

Theorem 1.1. Let F be an envelop for the class \mathcal{F} such that $P F^{2}<\infty$. Then

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left(n^{1 / 2}\left|P_{n} f-P f\right|\right) \leq C\|F\|_{L^{2}(P)} J(F, \mathcal{F})
$$

where

$$
J(F, \mathcal{F}):=\int_{0}^{1} \sqrt{1+\log \sup _{Q} M\left(\epsilon \sqrt{Q F^{2}}, \mathcal{F}, L^{2}(Q)\right)} \mathrm{d} \epsilon .
$$

1.1 Application to Boolean function classes with finite VC dimension

Let \mathcal{F} be a Boolean function class with finite VC dimension, and let D denote its VC dimension. Recall that the VC dimension is defined as the maximum cardinality of a set in \mathcal{X} that is shattered by the class \mathcal{F}. An important fact about VC dimension is the Sauer-Shelah-Vapnik-Chervonenkis lemma, which states that for every $n \geq 1$ and $x_{1}, \ldots, x_{n} \in \mathcal{X}$,

$$
\begin{equation*}
\left|\mathcal{F}\left(x_{1}, \ldots, x_{n}\right)\right| \leq\binom{ n}{0}+\binom{n}{1}+\cdots+\binom{n}{D} \tag{8.1}
\end{equation*}
$$

where $\mathcal{F}\left(x_{1}, \ldots, x_{n}\right)=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right): f \in \mathcal{F}\right\}$. Note that $\binom{n}{k}$ in (8.1) is taken to be 0 if $n<k$. The RHS of (8.1) equals 2^{D} if $n<D$ and is bounded from above by (en/D) ${ }^{D}$ if $n \geq D$.

We have seen previously that

$$
\begin{equation*}
\mathbb{E} \sup _{f \in \mathcal{F}}\left(n^{1 / 2}\left|P_{n} f-P f\right|\right) \leq C \sqrt{D \log (e n / D)} \text { for } n \geq D \tag{8.2}
\end{equation*}
$$

and this bound was proved by symmetrization and the elementary bound on Rademacher averages. This elementary bound involved the cardinality of $\mathcal{F}\left(X_{1}, \ldots, X_{n}\right)$ which we bound via (8.1).

It turns out that the logarithmic factor is redundant in (8.2), and one actually has the bound

$$
\begin{equation*}
\mathbb{E} \sup _{f \in \mathcal{F}}\left(n^{1 / 2}\left|P_{n} f-P f\right|\right) \leq C D^{1 / 2} \tag{8.3}
\end{equation*}
$$

This can be deduced as a consequence of Theorem 1.1 as we will demonstrate in this section. Since Theorem 1.1 gives bounds in terms of packing numbers, it becomes necessary to relate the packing numbers of \mathcal{F} to its VC dimension. This is done in the following important result due to Dudley.

Theorem 1.2. Suppose \mathcal{F} is a Boolean function class with VC dimension D. Then

$$
\begin{equation*}
\sup _{Q} M\left(\epsilon, \mathcal{F}, L^{2}(Q)\right) \leq\left(\frac{c_{1}}{\epsilon}\right)^{c_{2} D} \quad \text { for all } 0<\epsilon \leq 1 \tag{8.4}
\end{equation*}
$$

Here $c_{1}, c_{2}>0$ are universal constants, and the supremum is taken over all probability measures Q on X.

Note that Theorem 1.2 gives upper bounds for the ϵ-packing numbers when $\epsilon \leq 1$. Since the functions in \mathcal{F} take only values 0 and 1 , it is clear that $M\left(\epsilon, \mathcal{F}, L^{2}(Q)\right)=1$ for all $\epsilon \geq 1$.

Proof. Fix $0<\epsilon \leq 1$ and a probability measure Q on \mathcal{X}. Write $N=M\left(\epsilon, \mathcal{F}, L^{2}(Q)\right)$ and let $\left\{f_{1}, \ldots, f_{N}\right\}$ be a maximal ϵ-separated subset of \mathcal{F} in the $L^{2}(Q)$ metric. This means that for every $1 \leq i \neq j \leq N$,

$$
\delta:=\epsilon^{2}<\int\left(f_{i}-f_{j}\right)^{2} \mathrm{~d} Q=\int I\left(f_{i} \neq f_{j}\right) \mathrm{d} Q=Q I\left(f_{i} \neq f_{j}\right)
$$

Let Z_{1}, Z_{2}, \ldots be iid random variables from Q. Then

$$
\mathbb{P}\left\{f_{i}\left(Z_{1}\right)=f_{j}\left(Z_{1}\right)\right\}=1-Q I\left(f_{i} \neq f_{j}\right)<1-\delta .
$$

By independence, it holds for every $k \geq 1$ that

$$
\mathbb{P}\left\{f_{i}\left(Z_{1}\right)=f_{j}\left(Z_{1}\right), f_{i}\left(Z_{2}\right)=f_{j}\left(Z_{2}\right), \ldots, f_{i}\left(Z_{k}\right)=f_{j}\left(Z_{k}\right)\right\}<(1-\delta)^{k}
$$

In other words, the probability that f_{i} and f_{j} agree on every Z_{1}, \ldots, Z_{k} is at most $(1-\delta)^{k} \leq e^{-k \epsilon^{2}}$. By the union bound,

$$
\mathbb{P}\left\{\left(f_{i}\left(Z_{1}\right), \ldots, f_{i}\left(Z_{k}\right)\right)=\left(f_{j}\left(Z_{1}\right), \ldots, f_{j}\left(Z_{k}\right)\right) \text { for some } 1 \leq i<j \leq N\right\} \leq\binom{ N}{2}(1-\delta)^{k} \leq \frac{N^{2}}{2} e^{-k \delta}
$$

It follows immediately that

$$
\mathbb{P}\left\{\left|\mathcal{F}\left(Z_{1}, \ldots, Z_{k}\right)\right| \geq N\right\} \geq 1-\frac{N^{2}}{2} e^{-k \delta}
$$

If we take

$$
\begin{equation*}
k=\left\lceil\frac{2 \log N}{\delta}\right\rceil \geq \frac{2 \log N}{\delta} \tag{8.5}
\end{equation*}
$$

then $\mathbb{P}\left\{\left|\mathcal{F}\left(Z_{1}, \ldots, Z_{k}\right)\right| \geq N\right\} \geq 1 / 2>0$. For this particular choice of k, there exists a subset $\left\{z_{1}, \ldots, z_{k}\right\}$ such that

$$
\begin{equation*}
N \leq\left|\mathcal{F}\left(z_{1}, \ldots, z_{k}\right)\right| \leq\binom{ k}{0}+\binom{k}{1}+\cdots+\binom{k}{D} \tag{8.6}
\end{equation*}
$$

where the second inequality is due to the Sauer-Shelah-VC lemma.
Case 1. If $k \leq D$, then (8.6) gives

$$
M\left(\epsilon, \mathcal{F}, L^{2}(Q)\right)=N \leq 2^{D} \leq\left(\frac{2}{\epsilon}\right)^{D}
$$

which proves (8.4).
Case 2. Assume $k \geq D$. Together, (8.6) and (8.5) imply

$$
N \leq\left(\frac{e k}{D}\right)^{D} \leq\left(\frac{3 e \log N}{\delta D}\right)^{D}
$$

It follows that

$$
N^{1 / D} \leq \frac{3 e \log N}{\delta D}=\frac{6 e}{\delta} \log N^{1 /(2 D)} \leq \frac{6 e}{\delta} N^{1 /(2 D)}
$$

where we used $\log x \leq x(\forall x \geq 1)$ in the last step. Consequently, $N \leq(6 e / \delta)^{2 D}$ and hence

$$
N \leq\left(\frac{6 e}{\delta} \log (6 e / \delta)\right)^{D} \leq\left(\frac{6 e}{\delta} \frac{6 e}{4 \delta}\right)^{D}=\left(\frac{3 e}{\delta}\right)^{2 D}
$$

where the last inequality is based on the bound $\log x \leq x / 4$ for $x \geq 9$.
Combining the two cases completes the proof.
The bound (8.3) immediately follows from Theorems 1.1 and 1.2 as shown below.
Theorem 1.3. Suppose \mathcal{F} is a Boolean class of functions with VC dimension D. Then

$$
\begin{equation*}
\mathbb{E} \sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| \leq C \sqrt{\frac{D}{n}} \tag{8.7}
\end{equation*}
$$

Proof. Since \mathcal{F} is a Boolean class, we can apply Theorem 1.1 with $F(x) \equiv 1$. This gives

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right| \leq \frac{C}{\sqrt{n}} J(1, \mathcal{F}) \quad \text { with } \quad J(1, \mathcal{F})=\int_{0}^{1} \sqrt{1+\log \sup _{Q} M\left(\epsilon, \mathcal{F}, L^{2}(Q)\right)} \mathrm{d} \epsilon
$$

The packing numbers above can be bounded by Theorem 1.2, implying

$$
J(1, \mathcal{F}) \leq \int_{0}^{1} \sqrt{1+2 D \log \frac{3 e}{\epsilon^{2}}} \mathrm{~d} \epsilon
$$

Given $A \geq e$ and $v>0$, we wish to bound

$$
\int_{0}^{1} \sqrt{1+v \log (A / \epsilon)} \mathrm{d} \epsilon \leq A \sqrt{v} \int_{A}^{\infty} \frac{\sqrt{1+\log \epsilon}}{\epsilon^{2}} \mathrm{~d} \epsilon
$$

An integration by parts gives

$$
\begin{aligned}
\int_{A}^{\infty} \frac{\sqrt{1+\log \epsilon}}{\epsilon^{2}} \mathrm{~d} \epsilon & =-\frac{\left.\sqrt{1+\log \epsilon}\right|_{A} ^{\infty}+\frac{1}{2} \int_{A}^{\infty} \frac{1}{\epsilon^{2} \sqrt{1+\log \epsilon}} \mathrm{d} \epsilon}{} \\
& \leq \frac{\sqrt{\log (e A)}}{A}+\frac{1}{2} \int_{A}^{\infty} \frac{\sqrt{1+\log \epsilon}}{\epsilon^{2}} \mathrm{~d} \epsilon(\text { if } A \geq e)
\end{aligned}
$$

from which it follows

$$
\int_{A}^{\infty} \frac{\sqrt{1+\log \epsilon}}{\epsilon^{2}} \mathrm{~d} \epsilon \leq \frac{2 \sqrt{\log (e A)}}{A}
$$

Consequently,

$$
J(1, \mathcal{F}) \leq C D^{1 / 2}
$$

for some absolute constant $C>0$. Putting together the pieces completes the proof of Theorem 1.3.

The following examples are immediate applications of Theorem 1.3.
Example 1.1. Suppose X_{1}, \ldots, X_{n} are iid real-valued random variables having a common CDF F. Let F_{n} denote the empirical CDF. Then Theorem 1.3 immediately gives

$$
\mathbb{E} \sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \leq \frac{C}{\sqrt{n}}
$$

This is because the Boolean class $\mathcal{F}:=\left\{I_{(-\infty, x]}: x \in \mathbb{R}\right\}$ has VC dimension 1.
One can also obtain a high probability upper bound on $\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|$ using the bounded differences inequality that we discussed previously. Combined with above bound, it gives

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \leq \frac{C}{\sqrt{n}}+\sqrt{\frac{2 \log (1 / \alpha)}{n}} \text { with probability } \geq 1-\alpha
$$

Example 1.2 (Classification with VC classes). Consider the classification problem where we observe iid data $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with $X_{i} \in \mathcal{X}$ and $Y_{i} \in\{0,1\}$. Let C be class of functions from \mathcal{X} to $\{0,1\}$ (these are classifiers). For a classifier g, define its test error and training error by

$$
L(g)=\mathbb{P}\left\{Y_{1} \neq g\left(X_{1}\right)\right\} \quad \text { and } \quad L_{n}(g)=\frac{1}{n} \sum_{i=1}^{n} I\left\{g\left(X_{i}\right) \neq Y_{i}\right\}
$$

respectively. The ERM (empirical risk minimization) classifier is given by

$$
\widehat{g}_{n}:=\underset{g \in C}{\operatorname{argmin}} L_{n}(g) .
$$

It is usually of interest to understand the test error of \widehat{g}_{n} relative to the best test error in the class C, i.e.

$$
L\left(\widehat{g}_{n}\right)-\inf _{g \in C} L(g)
$$

If g^{*} minimizes $L(g)$ over $g \in C$, then we can bound the above discrepancy (excess risk) above as

$$
\begin{aligned}
L\left(\widehat{g}_{n}\right)-L\left(g^{*}\right) & =L\left(\widehat{g}_{n}\right)-L_{n}\left(\widehat{g}_{n}\right)+L_{n}\left(\widehat{g}_{n}\right)-L_{n}\left(g^{*}\right)+L_{n}\left(g^{*}\right)-L\left(g^{*}\right) \\
& \leq L\left(\widehat{g}_{n}\right)-L_{n}\left(\widehat{g}_{n}\right)+L_{n}\left(g^{*}\right)-L\left(g^{*}\right) \\
& \leq 2 \sup _{g \in C}\left|L_{n}(g)-L(g)\right|
\end{aligned}
$$

The last inequality above can sometimes be quite loose (we will look at improved bounds later). The term above can be written as $\sup _{f \in \mathcal{F}}\left|P_{n} f-P f\right|$, where

$$
\mathcal{F}:=\{(x, y) \mapsto I\{g(x) \neq y\}: g \in C\},
$$

P_{n} is the empirical distribution of $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$, and P is the distribution of $\left(X_{1}, Y_{1}\right)$.
Using the bounded differences inequality and the bound given by Theorem 1.3, we obtain that for every $\alpha \in(0,1)$,

$$
L\left(\widehat{g}_{n}\right)-L\left(g^{*}\right) \leq C \sqrt{\frac{\mathrm{VC}(\mathcal{F})}{n}}+\sqrt{\frac{8 \log (1 / \alpha)}{n}}
$$

with probability at least $1-\alpha$.
It can further be shown that $\operatorname{VC}(\mathcal{F}) \leq \operatorname{VC}(\mathcal{C})$. To see this, it suffices to argue that if \mathcal{F} can shatter $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, then C can shatter x_{1}, \ldots, x_{n}. For this, let $\eta_{1}, \ldots, \eta_{n}$ be arbitrary in $\{0,1\}$. We need to obtain a function $g \in C$ for which $g\left(x_{i}\right)=\eta_{i}$. Define $\delta_{1}, \ldots, \delta_{n}$ by

$$
\delta_{i}=\eta_{i} I\left(y_{i}=0\right)+\left(1-\eta_{i}\right) I\left(y_{i}=1\right)
$$

Because \mathcal{F} can shatter $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, there exists a function $f \in \mathcal{F}$ with $f\left(x_{i}, y_{i}\right)=\delta_{i}$ for $i=1, \ldots, n$. If $f(x, y)=I\{g(x) \neq y\}$ for some $g \in C$, then

$$
\eta_{i} I\left(y_{i}=0\right)+\left(1-\eta_{i}\right) I\left(y_{i}=1\right)=I\left\{g\left(x_{i}\right) \neq y_{i}\right\}
$$

indicating $g\left(x_{i}\right)=\eta_{i}$. This proves that C shatters x_{1}, \ldots, x_{n}, and hence proves the claim.
Finally, we conclude that for every $\alpha \in(0,1)$,

$$
L\left(\widehat{g}_{n}\right)-L\left(g^{*}\right) \leq C \sqrt{\frac{\mathrm{VC}(C)}{n}}+\sqrt{\frac{8 \log (1 / \alpha)}{n}}
$$

with probability at least $1-\alpha$. Thus, as long as $\operatorname{VC}(C)=o(n)$, the test error of \widehat{g}_{n} relative to the best test error in C converges to zero as $n \rightarrow \infty$.

