
MATH 281C: Mathematical Statistics

Lecture 7

The main goal for today is to state and prove Dudley’s entropy bound for the suprema of sub-
Gaussian processes. The proof involves an idea called chaining, which Kolmogorov pioneered.
Before we start with chaining, let us recall the following elementary bound on the Rademacher
average that was covered in Lecture 5.

Proposition 0.1. Suppose T is a finite subset of Rn with cardinality |T |. Then

Rn(T ) = Emax
t∈T

∣∣∣∣∣∣1n
n∑

i=1

εiti

∣∣∣∣∣∣ ≤
√

6 log(2|T |)
n

max
t∈T

√√
1
n

n∑
i=1

t2
i .

1 Dudley’s Metric Entropy Bound

What we need later is a stronger version than the previous result.

Proposition 1.1. Let T be a finite set and let {Xt, t ∈ T } be a stochastic process. Suppose that for
every t ∈ T and u ≥ 0, the inequality

P
(
|Xt| ≥ u

)
≤ 2e−u2/(2σ2) (7.1)

holds, where σ > 0 is a constant (variance proxy). Then, for a universal constant C > 0 we have

E
(
max
t∈T
|Xt|

)
≤ Cσ

√
log(2|T |). (7.2)

Remark 1.1. Note that Proposition 1.1 is indeed a generalization of Proposition 0.1. This is because
for Xt =

∑n
i=1 εiti (with t ∈ T ), Hoeffding’s inequality assures that (7.2) holds with

σ2 = max
t∈T

n∑
i=1

t2
i .

Proposition 1.1 holds for every set of random variables Xt satisfying (7.1) so in addition to Xt =∑n
i=1 εiti, it also holds for Xt ∼ N(0, σ2).

Proof of Proposition 1.1. Because

E
(
max
t∈T
|Xt|

)
=

∫ ∞

0
P
(
max
t∈T
|Xt| ≥ u

)
du,

we can control Emaxt∈T |Xt| by bound the tail inequality P(maxt∈T |Xt| ≥ u) for every u ≥ 0. For
this, write

P
(
max
t∈T
|Xt| ≥ u

)
= P

[⋃
t∈T

{
|Xt| ≥ u

}]
≤

∑
t∈T

P
(
|Xt| ≥ u

)
≤ 2|T |e−u2/(2σ2).
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This bound is good for large u but not so good for small u (because |T | is large). It is therefore good
to use it only for u ≥ u0 for some u0 to be specified later. This gives

E
(
max
t∈T
|Xt|

)
=

∫ ∞

0
P
(
max
t∈T
|Xt ≥ u

)
du

=

∫ u0

0
P
(
max
t∈T
|Xt ≥ u

)
du +

∫ ∞

u0

P
(
max
t∈T
|Xt ≥ u

)
du

≤ u0 + 2|T |
∫ ∞

u0

e−u2/(2σ2)du

≤ u0 +
2|T |
u0

σ2e−u2
0/(2σ

2),

valid for any u0 > 0. One can try to minimize the above term over u0. A simpler strategy is to
realize that the large term here is 2|T | so one can choose u0 to kill this term by setting

eu2
0/(2σ

2) = 2|T | or u0 = σ
√

2 log(2|T |).

This gives Emaxt∈T |Xt| ≤ σ
√

2 log(2|T |) +σ/
√

2 log(2|T |) ≤ Cσ
√

log(2|T |) for some C >
√

2. �

The bound in (7.2) can be loose when many of the Xt’s are close to each other: for instance,
when Xt, t ∈ T are highly correlated, maxt∈T |Xt| ≈ Xt0 for a single t0 ∈ T , and hence the bound in
(7.2) is loose by a factor of log |T |. However there exist examples where the bound in (7.2) is tight.
The simplest example is the following. Suppose Xt, t ∈ T are independently distributed asN(0, σ2).
Then it can be shown that

E
(
max
t∈T

Xt

)
≥ cσ

√
log |T |

for a positive constant c > 0. Therefore, in this case (under independence), (7.2) is tight up to
constant factor. A proof of this lower bound can be found here. This example means that Propo-
sition 1.1 cannot be improved without additional assumptions on the process {Xt, t ∈ T }. Chaining
gives improved bounds for Emaxt∈T Xt or Emaxt∈T |Xt| under an assumption on {Xt, t ∈ T } that is
different from (7.1). The assumption (7.1) pertains to the marginal distribution of each Xt but does
not say anything about how close Xt is to another Xs when t and s are close. In contrast, for chaining,
one assumes the existence of a metric d on T such that

P
(
|Xs − Xt| ≥ u

)
≤ 2e−u2/{2d2(s,t)}. (7.3)

Under this assumption, chaining provides a bound on Emaxt∈T |Xt| which involves the metric prop-
erties of (T, d).

1.1 Dudley’s bound for finite T

We first state Dudley’s bound when the index set T is finite, and subsequently improve it to the case
when T is infinite.

Theorem 1.1 (Dudley’s metric entropy bound for finite T ). Suppose (T, d) is a finite metric space
and {Xt, t ∈ T } is a stochastic process such that the bound (7.3) holds for every s, t ∈ T and u ≥ 0.
Then, for a universal positive constant C, the following inequality holds for every t0 ∈ T :

E
(
max
t∈T
|Xt − Xt0 |

)
≤ C

∫ ∞

0

√
log M(ε,T, d) dε. (7.4)
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The following remarks mention some alternative forms of inequality (7.4) and also describe
some implications.

(i) Let D denote the diameter of the metric space T , i.e. D = maxs,t∈T d(s, t). Then the packing
number M(ε,T, d) equals 1 for ε ≥ D (it is impossible to have two points in T whose distance
is strictly larger than ε when ε > D). Therefore,∫ ∞

0

√
log M(ε,T, d) dε =

∫ D

0

√
log M(ε,T, d) dε.

Moreover,∫ D

0

√
log M(ε,T, d) dε =

∫ D/2

0

√
log M(ε,T, d) dε +

∫ D

D/2

√
log M(ε,T, d) dε

=

∫ D/2

0

√
log M(ε,T, d) dε +

∫ D/2

0

√
log M(ε + D/2,T, d) dε

≤ 2
∫ D/2

0

√
log M(ε,T, d) dε,

because M(ε + D/2,T, d) ≤ M(ε,T, d). We can thus state Dudley’s bound as

E
(
max
t∈T
|Xt − Xt0 |

)
≤ C

∫ D/2

0

√
log M(ε,T, d) dε,

where the C above equals twice the constant C in (7.4). Similarly, again by splitting the above
integral in two parts (over 0 to D/4 and over D/4 to D/2), we can also state Dudley’s bound
as

E
(
max
t∈T
|Xt − Xt0 |

)
≤ C

∫ D/4

0

√
log M(ε,T, d) dε.

The constant C above now is 4 times the constant in (7.4).

(ii) Inequality (7.4) implies

Emax
t∈T
|Xt| ≤ E|Xt0 | + C

∫ D/2

0

√
log M(ε,T, d) dε for every t0 ∈ T.

(iii) If Xt, t ∈ T are joint centered Gaussian, then Xt −Xs is zero-mean normal random variable for
every s, t ∈ T so that (7.3) holds with

d(s, t) =
√
E(Xs − Xt)2.

(iv) The advantage of Theorem 1.1 over Proposition 1.1 is clear from the following example.
Suppose Xt, t ∈ T are given by

Xt = X0 + ηZt

for some very small η > 0 (η � σ), X0 ∼ N(0, σ2) and Zt, t ∈ T are iid standard normal
variables. Noting that var(Xt) = σ2 + η2, Proposition 1.1 implies Emaxt∈T |Xt| . σ

√
log |T |.

On the other hand, because

d(s, t) =
√
E(Xt − Xs)2 ≤ η

√
2,
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the packing number M(ε,T, d) equals 1 for all but sufficiently small values of ε, say for ε > ε0.
Thus Dudley’s bound will give σ + Cε0

√
log |T |, which can be much smaller than the bound

given by Proposition 1.1 (because ε0 is small, i.e. ε0 � σ).

We will now give the proof of Theorem 1.1, which is based on an idea called chaining. Specif-
ically, we will split maxt∈T (Xt − Xt0) in chains, and use the bound given by Proposition 1.1 within
the links of each chain.

Proof of Theorem 1.1. Let T be the diameter of D. For n ≥ 1, let Tn be a maximal D2−n-separated
subset of T , i.e. mins,t∈Tn,s,t d(s, t) > D2−n, so that |Tn| = M(D2−n,T, d). Due to its maximality,

max
t∈T

min
s∈Tn

d(s, t) ≤ D2−n. (7.5)

Because T is finite and d(s, t) > 0 for all s , t ∈ T , the set Tn will equal T when n is large. Let

N = min{n ≥ 1 : Tn = T }.

For each n ≥ 1, let πn : T → Tn denote the function which maps each point t ∈ T to the point in Tn

that is closest to T . If there are multiple such points, choose one arbitrarily. In other words, πn(t) is
chosen so that

d(t, πn(t)) = min
s∈Tn

d(t, s).

By (7.5),

d(t, πn(t)) ≤ D2−n for all t ∈ T and n ≥ 1. (7.6)

In particular, πN(t) = t. Moreover, let T0 = {t0} so that π0(t) = t0 for all t ∈ T .
Using the maps π0, π1, . . . , πN to define a telescoping sum

Xt − Xt0 =

N∑
n=1

{
Xπn(t) − Xπn−1(t)

}
, for every t ∈ T. (7.7)

The sequence

t0 → π1(t)→ π2(t)→ · · · → πN−1(t)→ πN(t) = t

can be viewed as a chain from t0 to t. This is what gives the argument the name chaining.
By (7.7), we have

max
t∈T
|Xt − Xt0 | ≤ max

t∈T

N∑
n=1

|Xπn(t) − Xπn−1(t)| ≤

N∑
n=1

max
t∈T
|Xπn(t) − Xπn−1(t)|,

so that

Emax
t∈T
|Xt − Xt0 | ≤

N∑
n=1

Emax
t∈T
|Xπn(t) − Xπn−1(t)|. (7.8)
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Now to bound Emaxt∈T |Xπn(t) − Xπn−1(t)| for each 1 ≤ n ≤ N, we will use the elementary bound
given by Proposition 1.1. By (7.3),

P
{
|Xπn(t) − Xπn−1(t)| ≥ u

}
≤ 2 exp

{
−u2

2d2(πn(t), πn−1(t))

}
.

Note that

d(πn(t), πn−1(t)) ≤ d(πn(t), t) + d(πn−1(t), t) ≤ D2−n + D2−n+1 = 3D2−n.

Thus, Proposition 1.1 can be applied with σ := 3D2−n, implying

Emax
t∈T
|Xπn(t) − Xπn−1(t)| ≤ C

3D
2n

√
log(2|Tn||Tn−1|) ≤ C1

D
2n

√
log(2M(D2−n,T, d)).

Plugging this into (7.8), and applying the monotonicity of ε 7→ M(ε,T, d), we deduce that

Emax
t∈T
|Xt − Xt0 | ≤ C1

N∑
n=1

D
2n

√
log(2M(D2−n,T, d))

≤ 2C1

N∑
n=1

∫ D2−n

D2−(n+1)

√
log(2M(ε,T, d)) dε

= 2C1

∫ D/2

D2−N−1

√
log(2M(ε,T, d)) dε

≤ 2C1

∫ D/2

0

√
log(2M(ε,T, d)) dε

≤ 4C1

∫ D/4

0

√
log(2M(ε,T, d)) dε.

For ε ≤ D/4, the packing number M(ε,T, d) ≥ 2 so that log(2M(ε,T, d)) ≤ 2 log M(ε,T, d). It then
follows that

Emax
t∈T
|Xt − Xt0 | ≤ C2

∫ D/4

0

√
log M(ε,T, d) dε,

as desired. �

1.2 Dudley’s bound for infinite T

We next prove Dudley’s bound for the case of infinite T . This requires a technical assumption called
separability, which will always be satisfied in our applications.

Definition 1.1 (Separable stochastic process). . Let (T, d) be a metric space. The stochastic process
{Xt, t ∈ T } indexed by T is said to be separable if there exists a null set Ω0 (of the probability space
Ω) and a countable subset T̃ of T such that for all ω < Ω0 and t ∈ T , there exists a sequence {tn} ⊆ T̃
with limn→∞ d(tn, t) = 0 and limn→∞ Xtn(ω) = Xt(ω).

The definition of separability requires that T̃ is a dense subset of T , meaning that the metric
space (T, d) is separable (a metric space is said to be separable if it has a countable dense subset).

The following fact is easy to check: if (T, d) is a separable metric space and if Xt, t ∈ T has
continuous sample paths (almost surely), then Xt, t ∈ T is separable. The statement that Xt, t ∈ T
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has continuous sample paths (almost surely) means that there exists a null set Ω0 such that for all
ω ∈ Ω0, the function t 7→ Xt(ω) is continuous on T .

We have also the following fact: if {Xt, t ∈ T } is a separable stochastic process, then

sup
t∈T
|Xt − Xt0 | = sup

t∈T̃
|Xt − Xt0 | almost surely, (7.9)

for every t0 ∈ T . Here T̃ is a countable subset of T , which appears in the definition of separability
of Xt, t ∈ T . In particular, the statement (7.9) implies that supt∈T |Xt − Xt0 | is measurable (note that
uncountable suprema are in general not guaranteed to be measurable; but this is not an issue for
separable processes).

Next we state Dudley’s theorem for separable processes. This theorem does not impose any
cardinality restrictions on T (it holds for both finite and infinite T ).

Theorem 1.2. Suppose (T, d) is a separable metric space and let {Xt, t ∈ T } be a separable stochastic
process. Suppose that (7.3) holds for every s, t ∈ T and u ≥ 0. Then, for every t0 ∈ T , we have

E
(
max
t∈T
|Xt − Xt0 |

)
≤ C

∫ D/2

0

√
log M(ε,T, d) dε,

where D is the diameter of the metric space (T, d).

Proof. Let T̃ be a countable subset of T such that (7.9) holds. We may assume T̃ contains t0
(otherwise simply add t0 to T̃ ). Since T̃ is countable, write it as T̃ = {t0, t1, t2, . . .}, and for each
k ≥ 1, let T̃k be the finite set obtained by taking the first k elements of T̃ . Then T̃k contains t0 for
every k ≥ 1.

Applying Theorem 1.1, the finite index set version of Dudley’s theorem, to {Xt, t ∈ T̃k}, we
obtain

Emax
t∈T̃k

|Xt − Xt0 | ≤ C
∫ diam(T̃k)/2

0

√
log M(ε, T̃k, d) dε ≤ C

∫ D/2

0

√
log M(ε,T, d) dε.

Note that the RHS does not depend on k. Letting k → ∞ on the LHS, we use the monotone
convergence theorem to obtain

Emax
t∈T̃
|Xt − Xt0 | ≤ C

∫ D/2

0

√
log M(ε,T, d) dε.

Together with (7.9), this completes the proof. �

1.3 Application of Dudley’s bound to Rademacher averages

Suppose T ⊆ Rn and consider the stochastic process Xt, t ∈ T given by

Xt =
1
√

n

n∑
i=1

εiti,

where ε1, . . . , εn are iid Rademacher random variables.
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Let us define the following norm on Rn:

‖t‖n =

√√
1
n

n∑
i=1

t2
i .

Also, let dn(s, t) = ‖s − t‖n be the corresponding metric on Rn.
By Hoeffding’s inequality, for every u ≥ 0,

P
(
|Xt − Xs| ≥ u

)
≤ 2 exp

{
−nu2

2
∑n

i=1(si − ti)2

}
= 2 exp

(
−u2

2‖s − t‖2n

)
= 2 exp

{
−u2

2d2
n(s, t)

}
.

Hence Xt, t ∈ T satisfies the assumptions in Dudley’s theorems with the metric dn. Also note that
T = Rn is trivially separable, and that the map

t = (t1, . . . , tn) 7→
1
√

n

n∑
i=1

εiti

is linear (and hence continuous in t). This means that Xt, t ∈ T is separable. We then apply Dudley’s
theorem with t0 = (0, . . . , 0). Since t0 may not be contained in T , we can apply Theorem 1.2 to
T ∪ {0} and notice that supt∈T∪{0} | · | = supt∈T | · |. As a result,

E sup
t∈T

∣∣∣∣∣ 1
√

n

n∑
i=1

εiti
∣∣∣∣∣ ≤ C

∫ diam(T∪{0})/2

0

√
log M(ε,T ∪ {0}, dn) dε,

where the diameter and packing numbers above are with respect to the dn metric. It is easy to see
that

diam(T ∪ {0}) = sup
s,t∈T∪{0}

‖s − t‖n ≤ 2σn with σn := sup
t∈T
‖t‖n.

We thus obtain the following upper bound

E sup
t∈T

∣∣∣∣∣ 1
√

n

n∑
i=1

εiti
∣∣∣∣∣ ≤ C

∫ σn

0

√
log M(ε,T ∪ {0}, dn) dε.

In the next class, we will combine the above bound with the symmetrization technique to obtain
an important upper bound on the suprema of empirical processes.
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