
MATH 281C: Mathematical Statistics

Lecture 6

In the previous class, we presented an important lemma, which allows us to show that VC classes
have polynomial discrimination and then to control their Rademacher complexity accordingly. The
first goal of this lecture is to provide a proof of this lemma.

1 Proof of the Sauer-Shelah-Vapnik-Chervonenkis Lemma

Lemma 1.1 (Sauer-Shelah-Vapnik-Chervonenkis). Suppose that the the VC dimension of a Boolean
class F of functions on X is D. Then for every n ≥ 1 and x1, . . . , xn ∈ X, we have

|F (x1, . . . , xn)| ≤
D∑
`=0

(
n
`

)
.

Here
(
n
k

)
is taken to be 0 if n < k. Moreover, if n ≥ D, then

|F (x1, . . . , xn)| ≤
D∑
`=0

(
n
`

)
≤

(en
D

)D
.

Proof. Let us briefly review the notation and setup. We have a Boolean class F with VC dimension
D, and we consider some fixed n ≥ 1. For notational simplicity, we let ∆ = F (x1, . . . , xn). Notice
that ∆ is a set, but it can equally be represented as a boolean matrix. Remember that elements of
∆ are bit vectors in {0, 1}n, so if we write those vectors out as u j for j = 1, . . . ,M := |∆|, we can
represent ∆ as an n × M matrix whose j-th column is u j. By construction, ∆ contains no duplicate
columns, since u j’s represent the distinct elements of the set ∆.

As usual with VC stuff, we will want to reason about subsets of {x1, . . . , xn}. We will inter-
changeably think of such subsets as subsets of {1, . . . , n} when convenient. For any such subset S ,
we let ∆S denote the |S | × M submatrix of ∆ that keeps only the rows corresponding to S . For
example, if S = {x1, x5, x8}, then ∆S is the 3 × M submatrix of ∆ consisting of only the first, fifth
and eighth rows of ∆.

It is important to notice, the statement that S is shattered by F is equivalent to the statement that
every element of {0, 1}|S | appears as a column of ∆S . Using that second definition, we can say that
given any boolean matrix ∆̃, ∆̃ shatters a subset S of the indices if every element of {0, 1}|S | appears
as a column of ∆̃S .

Now, since the VC dimension of F is D, no set S with |S | > D can be shattered. Therefore, the
number of subsets of {x1, . . . , xn} that can be shattered by F is bounded above by

D∑
`=0

(
n
`

)
.
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We therefore have to show that the number of columns of ∆ is at most the number of subsets of
{x1, . . . , xn} that can be shattered by ∆. Denote the latter by S(∆).

We claim that

M ≤ S(∆).

The proof of this follows an idea called downshifting. We can make this more precise by defining
the transformed matrix ∆′ as follows, assuming that we are downshifting using the first row i0 = 1:

∆′i j =


∆i j if i , i0,

∆i0 j if ∆i0 j = 0 or ∆· j = (1, u) and (0, u) apprears as a column of ∆,

0 otherwise.

That is, in the i0-th row, let 0’s remain still, and replace all 1’s with 0’s unless this produces a
duplicate column in ∆. We then claim that

S(∆′) ≤ S(∆). (6.1)

This claim is the key component of the proof.
To prove (6.1), we need to show that any subset S that ∆ does not shatter is also not shattered by

∆′. Fix an arbitrary S that is not shattered by ∆, and choose the i0-th row (i0 ∈ S ) for the downshift.
Without loss of generality, assume i0 = 1. Then there exists an element of u = (u1, . . . , u|S |) ∈
{0, 1}|S | that does not appear as a column in ∆S .

• If u = (1, v), then u does not appear as a column of ∆′S either; otherwise u mush be in ∆S

because downshifting never replace a 0 by a 1.

• If u = (0, v), consider two cases: (i) if u′ = (1, v) did not appear in ∆S either, then u is not a
column of ∆′S ; otherwise by downshifting, one of u and u′ has to be a column of ∆′S . (ii) if
u′ = (1, v) does appear in ∆S , then since (0, v) is not, downshifting replaces (1, v) by (0, v).
Hence (1, v) ∈ {0, 1}|S | cannot be a column of ∆′S , so that ∆′ does not shatter S.

Combining the pieces completes the proof of (6.1).
Repeat downshifting until we cannot downshift anymore, and let the ∆∗ be the resulting matrix.

By (6.1), S(∆∗) ≤ S(∆). Our final step is therefore to show M ≤ S(∆∗).
The proof of this claim proceeds by constructing, for each column j, a different set S j (i.e., a

subset of {x1, . . . , xn}) that ∆∗ shatters. For j = 1, . . . ,M,

S j = {1 ≤ i ≤ n : ∆∗i j = 1}. (6.2)

These sets are distinct because if S j = S j′ , then column j and column j′ have 1’s at the same location
and therefore are duplicates of each other, which is ruled out because downshifting preserves the
distinctness of columns. So we only need to show that S j is shattered by ∆∗. For that, we first
notice that ∆∗S j

has the all 1’s vector (the vector that has 1 at each coordinate) as its j-th column.

Next, suppose there was some vector u ∈ {0, 1}|S j | having exactly one zero that was NOT a column
of ∆∗S j

. Then we could downshift using the row where this zero appears, so that the j-th column
would have turned into u, contradicting the minimality of ∆∗. We hence conclude that every pattern
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of 0’s and 1’s which has only one zero must appear in ∆∗S j
. An inductive argument then shows that

every pattern of 0’s and 1’s (i.e. every u ∈ {0, 1}|S j |) must appear in ∆∗S j
. Therefore, ∆∗ shatters S j

for j = 1, . . . ,M, implying M ≤ S(∆∗).
Finally, it remains to show that when n ≥ D,(

n
0

)
+

(
n
1

)
+ · · · +

(
n
D

)
≤

(
en
D

)D

.

To see this, let B be a binomial random variable that corresponds to n tosses with probability of
success 1/2, that is, B =

∑n
i=1 bi with bi iid having Bernoulli(1/2). Then the LHS above equals

2nP(B ≤ D) = 2n
D∑
`=0

P(B = `).

On the other hand, note that I(B ≤ D) ≤ (D/n)B−D (recall that D/n ≤ 1), from which it follows that

2nP(B ≤ D) ≤ 2nE(D/n)B−D = (D/n)−D2nE(D/n)B

=

( n
D

)D n∑
`=0

(D
n

)`(n
`

)
=

( n
D

)D
(1 + D/n)n ≤

(en
D

)D
.

The proof of Lemma 1.1 is now complete. �

2 Covering and Packing Numbers

As mentioned in the previous lecture, chaining gives sharper bounds for Rn(F (x1, . . . , xn)) compared
to the simple bounds discussed in the previous lecture. In order to discuss chaining, we need to be
familiar with the notions of covering and packing numbers.

Let T be a set equipped with a pseudometric d. A pseudometric is a map d : T × T → [0,∞)
that satisfies

• d(t, t) = 0;

• d(t1, t2) = d(t2, t1);

• d(t1, t2) ≤ d(t1, t3) + d(t3, t2) for all t1, t2, t3 ∈ T .

If, in addition, it also satisfies d(t1, t2) > 0 for t1 , t2 ∈ T , then it is called a metric.

Example 2.1. Given a space of functions F mapping X → R, we can define a pseudometric by

( f , g) 7→

√√
1
n

n∑
i=1

{ f (xi) − g(xi)}2.

It will not, however, be a metric in general for arbitrary fixed x1, . . . , xn ∈ X. We will see more
concrete examples shortly.

Definition 2.1 (δ-net). Let F ⊆ T and δ > 0. We say a subset {t1, . . . , tN} ⊆ T is a δ-net of F if for
every t ∈ F, there exists a ti ∈ F such that d(t, ti) ≤ δ.
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Definition 2.2 (Covering number). The δ-covering number F ⊆ T is denoted by NT (δ, F, d) and is
defined as the size of the minimal δ-net of F. That is,

NT (δ, F, d) = min
{
|Nδ| : Nδ is a δ-net of F

}
.

The logarithm of this quantity is called the metric entropy. If NT (δ,T, d) < ∞ for every δ > 0, we
say that T is totally bounded.

Remark 2.1. The centers need not lie inside the subset F, hence the need to include the T subscript.
We can regard F as a (pseudo)metric space in its own right, and define NF(δ, F, d) accordingly.
These different concepts of covering number are closely related. In fact,

NF(2δ, F, d) ≤ NT (δ, F, d) ≤ NF(δ, F, d).

We leave the proof of this property as an exercise.

The notion of covering numbers is closely related to that of packing numbers which are defined
next.

Definition 2.3 (δ-packing). For δ > 0, we say that a subset {t1, . . . , tM} ⊆ F is a δ-packing if for
every i , j, d(ti, t j) > δ.

Definition 2.4 (Packing number). The δ-packing number M(δ, F, d) of F is defined as the largest M
such that there exists a δ-packing of F with M elements. That is,

M(δ, F, d) = max
{
|Pδ| : Pδ is a δ-packing of F

}
.

The following result shows that covering and packing numbers are closely related to each other.

Lemma 2.1. For every δ > 0, we have

NF(δ, F, d) ≤ M(δ, F, d) ≤ NT (δ/2, F, d) ≤ NF(δ/2, F, d). (6.3)

A basic case we need to understand in order to make use of packings and coverings is the case
of Rk. This setting is in some sense a limiting simple case for the concepts we have considered
here. More generally, we will be interested in analyzing covering and packing numbers of function
classes. When these classes are parametric, however, they will turn out to be have roughly like
k-dimensional Euclidean space in that N(ε, F, d) ≈ ε−k. On the other hand, some classes will turn
out to be nonparametric and will exhibit scalings like exp(ε−k).

2.1 Parametric classes

Proposition 2.1. Suppose ‖·‖ denotes any norm in Rk. For example, it might be the usual Euclidean
norm or the `1-norm, ‖x‖1 =

∑k
j=1 |x j|. Let

BR =
{
x ∈ Rk : ‖x‖ ≤ R

}
.

Then, for every ε > 0, we have

M(εR, BR, d) ≤
(
1 +

2
ε

)k
, (6.4)

where d denotes the metric corresponding to the norm ‖ · ‖.
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Proof. Let x1, . . . , xN be any set of points in BR that is εR-separated, i.e., ‖xi− x j‖ > εR for all i , j.
Then the following closed balls

B(xi, εR/2) :=
{
x ∈ Rk : ‖x − xi‖ ≤ εR/2

}
, i = 1, . . . ,N,

are disjoint. Moreover, B(xi, εR/2) ⊆ BR+εR/2. As a result,

N∑
i=1

Vol
(
B(xi, εR/2)

)
≤ Vol(BR+εR/2).

If we let Λ denote the volume of the unit ball B1, then the above inequality becomes

N∑
i=1

(
εR
2

)k
Λ ≤

(
R +

εR
2

)k
Λ,

which immediately proves (6.4). �

The argument used above to prove (6.4) is known as the volumetric argument because it is
based on a volume comparison.

Example 2.2 (A simple parametric case). Let F denote the set of functions {x 7→ 〈β, x〉 : β ∈ Rk},
and we equip it with a pseudometric

d(β, γ) =

√
EQ〈β − γ, X〉2

for some distribution Q on Rk. Since

d(β, γ) ≤
√
EQ‖X‖22︸      ︷︷      ︸
=:‖X‖Q

·‖β − γ‖2,

we should expect N(δ,F , d) ≈ δ−k and in fact this is true.

The following proposition gives a general result for a particular type of parametric class of
functions, extending the example presented above. Note that when D and ‖Γ‖Q below are constants,
the covering number bound given by the result below is of the form ε−k.

Proposition 2.2. Let Θ ⊆ Rk be a non-empty bounded subset with Euclidean diameter D, and let
F = { fθ : θ ∈ Θ} be a class of functions on X indexed by Θ such that for some nonnegative function
Γ : X → R,

| fθ1(x) − fθ2(x)| ≤ Γ(x) · ‖θ1 − θ2‖ (6.5)

for all x ∈ X and θ1, θ2 ∈ Θ. Here ‖ · ‖ denotes the usual Euclidean norm on Rk.
Fix a probability measure Q on X, and let d denote the pseudometric on F defined by

d( f , g) =

√∫
X

{ f (x) − g(x)}2dQ(x) =

√
EQ{ f (X) − g(X)}2.

Then, for every ε > 0,

M(ε,F , d) ≤
(
1 +

2D‖Γ‖Q
ε

)k

with ‖Γ‖Q =

{∫
X

|Γ(x)|2dQ(x)
}1/2

.
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Proof. Condition (6.5) implies that for every θ1, θ2 ∈ Θ,

d( fθ1 , fθ2) ≤ ‖θ1 − θ2‖ · ‖Γ‖Q.

As a result, every ε-separated subset of F under metric d is automatically an ε/‖Γ‖Q-separated
subset on Θ. Consequently,

M(ε,F , d) ≤ M
(

ε

‖Γ‖Q
,Θ, ‖ · ‖

)
.

To bound the Euclidean packing number, we use the assumption that Θ has diameter ≤ D so that
Θ ⊆ B(a,D) for every a ∈ Θ. Pick a arbitrary a ∈ Θ, we have

M
(

ε

‖Γ‖Q
,Θ, ‖ · ‖

)
≤ M

(
ε

‖Γ‖Q
, B(a,D), ‖ · ‖

)
.

To bound the RHS, using Proposition 2.1 (note that we can take a = 0 above because balls of the
same radius will have the same packing numbers regardless of their center) yields

M
(

ε

‖Γ‖Q
, B(a,D), ‖ · ‖

)
≤

(
1 +

2D
ε
‖Γ‖Q

)k

,

which completes the proof. �

2.2 Nonparametric classes

The difficulty of estimating a nonparametric function depends on the structure or landscape of this
function. Quantitatively, this is reflected by the convergence rate, which is often determined by the
global metric entropy over the whole function class (or over large subsets of it). The advantage
is that the metric entropies are available in approximation theory for many function classes; see
Lorentz, Golitschek and Markovoz (1996) and Section 2 of van der Vaart and Wellner (1996). The
most standard examples of nonparametric function classes are smoothness classes. These will have
covering numbers that are exponential in 1/ε. We will introduce smoothness and convex classes
and describe their covering numbers in one dimension, and then generalize to multiple dimensions.

2.2.1 Smoothness classes

Throughout this section, we define the pseudometric as

d( f , g) = sup
x∈[0,1]

| f (x) − g(x)|.

Fix α > 0, let β be the largest integer that is strictly smaller than α. Then, define the function class
Sα that consists of functions f on [0, 1] satisfying the following properties:

(i) f is continuous on [0, 1];

(ii) f is β times differentiable on (0, 1);

(iii) | f (k)(x)| ≤ 1 (or by some constant C0 > 0) for all k = 0, 1, . . . , β and x ∈ [0, 1], where
f (0)(x) = f (x);
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(iv) | f (β)(x) − f (β)(y)| ≤ |x − y|α−β (or ≤ L|x − y|α−β) for all x, y ∈ (0, 1).

Note that if α = 1, Sα is the class of differentiable 1-Lipschitz functions on [0, 1] that are
bounded by 1. In general, α measures the degree of smoothness, with the gap between β and α

measuring specifically the smoothness of the β-th derivative.

Theorem 2.1. There exist positive constants C1 and C2 depending on α alone such that for all
ε ∈ (0, 1),

C1ε
−1/α ≤ log M(ε,Sα, ρ) ≤ C2ε

−1/α.

Thus the ε-metric entropy of the smoothness class Sα in one dimension grows as ε−1/α. Here α
denotes the degree of smoothness (the higher α is, the smoother the functions in Sα).

This result has a direct generalization to multiple dimensions. As before, α > 0, and β is the
largest integer that is strictly smaller than α. For a vector p = (p1, . . . , pd) consisting of nonnegative
integers p1, . . . , pd, let 〈p〉 = p1 + · · · + pd. Define the partial derivative operator

Dp = ∂〈p〉/∂xp1
1 · · · ∂xpd

d .

The class Sα,d is defined to consist of all functions f on [0, 1]d that satisfy

(i) f is continuous on [0, 1]d;

(ii) All partial derivatives Dp of f exist on (0, 1)d for 〈p〉 ≤ β;

(iii) |Dp f (x)| ≤ 1 for all p with 〈p〉 ≤ β and x ∈ [0, 1]d;

(iv) |Dp f (x) − Dp f (y)| ≤ |x − y|α−β for all p with 〈p〉 = β and x, y ∈ (0, 1)d.

Once again, we consider the supremum metric. Note that in this case, setting α = 1 gives the
set of differentiable 1-Lipschitz functions with respect to the L2 metric that are also bounded by 1.
Below are some bounds on metric entropies proved by Kolmogorov. See Section 2.7 of van der
Vaart and Wellner (1996).

Theorem 2.2. There exist positive constants C1 and C2 depending only on (d, α) such that for all
sufficiently small ε > 0,

C1ε
−d/α ≤ log M(ε,Sα,d, ρ) ≤ C2ε

−d/α.

Thus the metric entropy of a smoothness class of functions with smoothness α and dimension d
scales as ε−d/α. This grows as d increases and goes down as α increases.

2.2.2 Monotone classes

LetM denote the class of all functions f on [0, 1] such that

(i) f is non-decreasing on [0, 1];

(ii) | f (x)| ≤ 1 for all x ∈ [0, 1].
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For a probability measure Q on [0, 1], let ρQ denote the metric onM given by

ρQ( f , g) = ‖ f − g‖Q =

{∫
{ f (x) − g(x)}2dQ(x)

}1/2

.

Then it can be proved that (see Section 2.7.2 in van der Vaart and Wellner (1996))

log M(ε,M, ρQ) ≤
C
ε

for every probability measure Q on [0, 1], where C > 0 is an absolute constant. There exist prob-
ability measures Q for which a lower bound of C2/ε also holds on the metric entropy. Comparing
this result with Theorem 2.1, it is clear that the covering numbers ofM (class of bounded mono-
tone functions) are comparable to the smoothness class S1 (class of bounded Lipschitz continuous
functions). Thus bounded monotone functions have the same metric entropy as bounded Lipschitz
functions even though monotone functions need not be continuous.

2.2.3 Lipschitz convex classes

Let C(L) denote the class of all functions f on [0, 1]d such that

(i) f is convex on [0, 1]d;

(ii) | f (x)| ≤ 1 for all x ∈ [0, 1]d;

(iii) | f (x) − f (y)| ≤ L‖x − y‖.

Let ρ be the supremum metric on [0, 1]d. Bronshtein (1976) proved that for ε sufficiently small,

C1

(L
ε

)d/2
≤ log N(ε,C(L), ρ) ≤ C2

(1 + L
ε

)d/2
,

where C1,C2 > 0 are constants not depending on ε. Comparing this to Theorem 2.2, it is clear
that, in terms of metric entropy, C := C(1) is comparable to the smoothness class S2,d. This is
interesting because convex functions are not necessarily twice differentiable in the usual sense. Yet,
they possess the regularity of second order smoothness in terms of metric entropy.

For more results on covering numbers for convex functions, see Guntuboyina and Sen (2013).
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