
MATH 281C: Mathematical Statistics

Lecture 5

1 Bounds for the Expected Suprema

The next major topic of the course involves bounding the quantity

E sup
f∈F
|Pn f − P f |. (5.1)

The two main ideas here are Symmetrization and Chaining. We shall go over symmetrization first.
Symmetrization bounds (5.1) from above using the Rademacher complexity of the class F . Let

us first denote the Rademacher complexity. A Rademacher random variable is a random variable
that takes the two values +1 and −1 with probability 1/2 each. For a subset A ⊆ Rn, its Rademacher
average is defined by

Rn(A) := E sup
a∈A

∣∣∣∣∣∣1n
n∑

i=1

εiai

∣∣∣∣∣∣,
where the expectation is taken with respect to iid Rademacher random variables ε1, . . . , εn. Note
first that (1/n)

∑n
i=1 εiai measures the “correlation” between the values a1, . . . , an and independent

Rademacher noise. This means that Rn(A) is large when there exists vectors (a1, . . . , an) ∈ A that
fit the Rademacher noise very well. This usually means that the set A is large. In this sense, Rn(A)
measures the size of the set A.

Example 1.1. For A = {(1, . . . , 1)} ⊆ Rn, we have Rn(A) = E|(1/n)
∑n

i=1 εi| ≈ Θ(n−1/2).

Example 1.2. Let A = {−1, 1}n with cardinality |A| = 2n. For each realization (ε1, . . . , εn) ∈
{−1, 1}n, the maximum |(1/n)

∑n
i=1 εiai| is achieved at ai = εi for all i. This implies Rn(A) =

E supa∈A |(1/n)
∑n

i=1 εiai| = 1.

In the empirical process setup, we have iid random observations X1, . . . , Xn taking values in X
as well as a class of real-valued functions F on X. Let

F (X1, . . . , Xn) =
{
( f (X1), . . . , f (Xn)) : f ∈ F

}
.

This is a random subset of Rn and its Rademacher average, Rn(F (X1, . . . , Xn)), is a random variable.
The expectation of this random variable with respect to the distirbution of X1, . . . , Xn, is called the
Rademacher complexity of F :

Rn(F ) := ERn(F (X1, . . . , Xn)).
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It is easy to see that

Rn(F ) = E sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣,
where the expectation is taken with respect to ε1, . . . , εn and X1, . . . , Xn, which are independent (εi’s
are iid Rademachers and Xi’s are iid having distribution P).

The next result shows that the expectation in (5.1) is bounded from above by twice the Rademacher
complexity Rn(F ).

Theorem 1.1 (Symmetrization). We have

E sup
f∈F
|Pn f − P f | ≤ 2Rn(F ) = 2E sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣,
where the expectation on the left-hand side is taken with respect to X1, . . . , Xn that are iid with
distribution P, while the expectation on the right-hand side is taken with respect to both Xi’s and
independent Rademachers εi’s.

Proof. Let X′1, . . . , X
′
n be random variables that are independent copies of X1, . . . , Xn. In other

words, X1, . . . , Xn, X′1, . . . , X
′
n are iid with distribution P. We can then write

E f (X1) = E

{
1
n

n∑
i=1

f (X′i )
}
.

As a result, we have

E sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E f (X1)

∣∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E
{

1
n

n∑
i=1

f (X′i )
}∣∣∣∣∣∣

= E sup
f∈F

∣∣∣∣∣∣E
{

1
n

n∑
i=1

f (Xi) −
1
n

n∑
i=1

f (X′i )
∣∣∣∣∣X1, . . . , Xn

}∣∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) −
1
n

n∑
i=1

f (X′i )

∣∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

{
f (Xi) − f (X′i )

}∣∣∣∣∣∣.
The method used above is called symmetrization. We now introduce iid Rademacher variables
ε1, . . . , εn. Because Xi is an independent copy of X′i , it is clear that the distribution of f (Xi) − f (X′i )
is the same as that of εi{ f (Xi) − f (X′i )}. As a result, we have

E sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

{
f (Xi) − f (X′i )

}∣∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi
{
f (Xi) − f (X′i )

}∣∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (Xi)

∣∣∣∣∣∣ + E sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

εi f (X′i )

∣∣∣∣∣∣ = 2Rn(F ).

�
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Theorem 1.1 implies that we can control (5.1) by bounding Rn(F ) from above. The usual
strategy used for bounding Rn(F ) is the following. One first fixes points x1, . . . , xn ∈ X, and bounds
the Rademacher average of the set

F (x1, . . . , xn) :=
{
( f (x1), . . . , f (xn)) : f ∈ F

}
. (5.2)

If an upper bound is obtained for this Rademacher average that does not depend on x1, . . . , xn, then it
automatically also becomes an upper bound for Rn(F ). Note that in order to bound Rn(F (x1, . . . , xn))
for fixed points x1, . . . , xn, we only need to deal with the simple distribution of ε1, . . . , εn, which
makes this much more tractable.

The main technique for bounding Rn(F (x1, . . . , xn)) will be chaining. Before we get to chaining,
let us first look at a more elementary bound that works well in certain situations for Boolean classes
F (i.e., f (x) ∈ {0, 1}). As we will see later, this bound will not be as accurate/sharp as the bounds
given by chaining.

2 Simple Bounds on the Rademacher Average Rn(F (x1, . . . , xn))

These bounds are based on the following simple result.

Proposition 2.1. Suppose A is a finite subset of Rn with cardinality |A|. Then

Rn(A) = Emax
a∈A

∣∣∣∣∣∣1n
n∑

i=1

εiai

∣∣∣∣∣∣ ≤ √6

√
log(2|A|)

n
max
a∈A

√√
1
n

n∑
i=1

a2
i . (5.3)

Proof. For every nonnegative random variable X, one has

EX =

∫ ∞

0
P(X > t) dt,

which can, for example, be proved by interchanging the integral and the probability on the right-
hand side. We will use this identity below.

For every a ∈ A, we have

E exp
{

(
∑n

i=1 aiεi)2

6
∑n

i=1 a2
i

}
=

∫ ∞

0
P

[
exp

{
(
∑n

i=1 aiεi)2

6
∑n

i=1 a2
i

}
> t

]
dt

≤ 1 +

∫ ∞

1
P

(∣∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣∣ >
√√

6
n∑

i=1

a2
i

√
log t

)
dt

≤ 1 + 2
∫ ∞

1
exp

{
−

6 log(t)
∑n

i=1 a2
i

2
∑n

i=1 a2
i

}
dt (Hoeffding’s inequality)

= 1 + 2
∫ ∞

1
t−3 dt = 2.

From the above, we have

E exp
{

max
a∈A

(
∑n

i=1 aiεi)2

6
∑n

i=1 a2
i

}
= Emax

a∈A
exp

{
(
∑n

i=1 aiεi)2

6
∑n

i=1 a2
i

}
≤ E

∑
a∈A

exp
{

(
∑n

i=1 aiεi)2

6
∑n

i=1 a2
i

}
≤ 2|A|,
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where |A| is the cardinality of A. This can be rewritten as

E exp
(
max
a∈A

∣∣∣∣∣∣
∑n

i=1 aiεi√
6
∑n

i=1 a2
i

∣∣∣∣∣∣
)2

≤ 2|A|.

Note that the function x 7→ ex2
is convex, applying Jensen’s inequality yields (e(EY)2

≤ EeY2
)

exp
(
Emax

a∈A

∣∣∣∣∣∣
∑n

i=1 aiεi√
6
∑n

i=1 a2
i

∣∣∣∣∣∣
)2

≤ E exp
(
max
a∈A

∣∣∣∣∣∣
∑n

i=1 aiεi√
6
∑n

i=1 a2
i

∣∣∣∣∣∣
)2

≤ 2|A|,

so that

Emax
a∈A

∣∣∣∣∣∣
∑n

i=1 aiεi√
6
∑n

i=1 a2
i

∣∣∣∣∣∣ ≤ √
log(2|A|).

From here, the inequality given in (5.3) follows by the trivial inequality:

max
a∈A

∣∣∣∣∣∣ n∑
i=1

aiεi

∣∣∣∣∣∣ ≤ max
a∈A

√√
6

n∑
i=1

a2
i ×max

a∈A

∣∣∣∣∣∣
∑n

i=1 aiεi√
6
∑n

i=1 a2
i

∣∣∣∣∣∣.
�

Alternatively, we can also prove Proposition 2.1 by directly using moment generating function.

Alternative Proof of Proposition 2.1. In this proof, we will use a basic inequality: for any x ∈ R,

1
2

(ex + e−x) ≤ ex2/2.

This inequality is easily proved by comparing the coefficients of Taylor series of both sides. For
a = (a1, . . . , an), let Za = (1/n)

∑n
i=1 εiai, and consider its MGF: for λ ∈ R,

EeλRn(A) = eλEmaxa∈A |Za |
(i)
≤ Eeλmaxa∈A |Za | = Emax

a∈A
eλ|Za | ≤ E

∑
a∈A

(eλZa + e−λZa)
(ii)
= 2

∑
a∈A

EeλZa ,

where inequality (i) is based on Jensen’s inequality, and equality (ii) uses the symmetry property
that Za

d
= −Za. Next, using the independence of εi and the basic inequality we obtain

EeλZa =

n∏
i=1

Eeλεiai/n =

n∏
i=1

1
2
(
eλai/n + e−λai/n) ≤ n∏

i=1

eλ
2a2

i /(2n2) = eλ
2 ∑n

i=1 a2
i /(2n2).

Combine both equations, we immediately have eλRn(A) ≤ 2|A|eλ
2 maxa∈A

∑n
i=1 a2

i /(2n2). Taking logarithm
on both sides yields

Rn(A) ≤
log(2|A|)

λ
+
λmaxa∈A

∑n
i=1 a2

i

2n2 , valid for any λ > 0.

Picking the optimal

λ∗ =

√
2n2 log(2|A|)

maxa∈A
∑n

i=1 a2
i

to minimize the RHS finishes the proof. �
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Let us now apply Proposition 2.1 to control the Rademacher complexity of Boolean Function
Classes. We say that F is a Boolean class if f (x) takes only the two values 0 and 1 for every function
f and every x ∈ X. Boolean classes F arise in the problem of classification (where F can be taken
to consist of all functions f of the form I{g(X) , Y}). They are also important for historical reasons:
empirical process theory has its origins in the study of supx{Fn(x) − F(x)}, which corresponds to
taking F = {I(−∞, t] : t ∈ R}.

Let us now fix a Boolean class F and points x1, . . . , xn. The set F (x1, . . . , xn) (defined in (5.2))
is obviously finite, so that we can apply Proposition 2.1 to control Rn(F (x1, . . . , xn)). This gives

Rn(F (x1, . . . , xn)) ≤

√
6 log(2|F (x1, . . . , xn)|)

n
max
f∈F

√√
1
n

n∑
i=1

f 2(xi).

Because F is Boolean, we can simply bound each f 2(xi) by 1 to obtain

Rn(F (x1, . . . , xn)) ≤

√
6 log(2|F (x1, . . . , xn)|)

n
. (5.4)

Now for some classes F , the cardinality |F (x1, . . . , xn)| can be bounded from above by a poly-
nomial in n for every set of n points x1, . . . , xn ∈ X. We refer to such classes as classes having poly-
nomial discrimination. For such classes, we can bound Rn(F (x1, . . . , xn)) by a constant multiple of√

log(n)/n for every x1, . . . , xn. Because Rn(F ) is defined as the expectation of Rn(F (X1, . . . , Xn)),
we would obtain that, for such Boolean classes, the Rademacher complexity is bounded by a con-
stant multiple of

√
log(n)/n.

Definition 2.1. The class of Boolean functions F is said to have polynomial discrimination if
there exists a polynomial ρ(·) such that for every n ≥ 1 and every set of n points x1, . . . , xn in X, the
cardinality of F (x1, . . . , xn) is at most ρ(n).

How does one check that a given Boolean class F has polynomial discrimination? The most
popular way is via the Vapnik-Chervonenkis dimension (or simply the VC dimension) of the class.

Definition 2.2 (VC dimension). The VC dimension of a class of Boolean functions F on X is
defined as the maximum integer D for which there exists a finite subset {x1, . . . , xD} of X satisfying

F (x1, . . . , xD) = {0, 1}D, or equivalently, |F (x1, . . . , xD)| = 2D.

The VC dimension is taken to be∞ if the above condition is satisfied for every integer D.

Example 2.1. For Boolean function class F = {I(−∞, t] : t ∈ R}, its VD dimension is 1. Since
we can easily verify that for x1 = 0, F (x1) = {0, 1}; for any x1, x2 (w.l.o.g. assume x1 ≤ x2), then
(0, 1) < F (x1, x2).

Definition 2.3 (Shattering). A finite subset {x1, . . . , xm} of X is said to be shattered by the Boolean
class F if F (x1, . . . , xm) = {0, 1}m. By convention, we extend the definition of shattering to empty
subsets as well by saying that the empty set is shattered by every nonempty class F .

It should be clear from the above pair of definition that an alternative definition of VC dimension
is: The maximum cardinality of a finite subset of X that is shattered by the Boolean class.

The link between VC dimension and polynomial discrimination comes via the following famous
result, knows as the Sauer-Shelah lemma or the VC lemma.
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Lemma 2.1 (Sauer-Shelah-Vapnik-Chervonenkis). Suppose that the the VC dimension of a Boolean
class F of functions on X is D. Then for every n ≥ 1 and x1, . . . , xn ∈ X, we have

|F (x1, . . . , xn)| ≤
(
n
0

)
+

(
n
1

)
+ · · · +

(
n
D

)
.

Here
(
n
k

)
is taken to be 0 if n < k. Moreover, if n ≥ D, then

|F (x1, . . . , xn)| ≤
(
n
0

)
+

(
n
1

)
+ · · · +

(
n
D

)
≤

(
en
D

)D

.

Combining (5.4) with Lemma 2.1, we obtain the following bound on the Rademacher complex-
ity and expected suprema for Boolean classes with finite VC dimension.

Proposition 2.2. Suppose F is a Boolean function class with VC dimension D. Then

Rn(F ) ≤ C

√
D
n

log
(en

D

)
and E sup

f∈F

∣∣∣Pn f − P f
∣∣∣ ≤ C

√
D
n

log
(en

D

)
.

Here C is a universal positive constant.

Remark 2.1. It turns out that the logarithmic term is not needed in the bounds given by the above
proposition. We will see later that the bounds given by chaining do not have the superfluous loga-
rithmic factor.

We leave the proof of Lemma 2.1 to the next lecture. Here we give two examples of Boolean
classes with finite VC dimension.

Example 2.2. LetV be a D-dimensional vector space of real functions on X. Let F := {I( f ≥ 0) :
f ∈ V}. Then VC dimension of F is at most D.

Proof. For any D + 1 points {x1, . . . , xD+1}, consider the set T =
{(

f (x1), . . . , f (xD+1
)

: f ∈ V
}
.

SinceV is a D-dimensional vector space, T is a linear subspace of RD+1 with dimension at most D.
Therefore, there exists y ∈ RD+1 and y , 0 such that y is orthogonal to the subspace T , i.e.,∑

i

yi f (xi) = 0 for all f ∈ V. (5.5)

Without loss of generality, assume there is an index k such that yk > 0. Now suppose F shatters
{x1, . . . , xD+1}. Then, there is f ∈ V satisfying

f (xi) < 0 (⇔ I{ f (xi) ≥ 0} = 0) for all i such that yi > 0;

f (xi) ≥ 0 (⇔ I{ f (xi) ≥ 0} = 1) for all i such that yi ≤ 0.

Then we have
∑

i yi f (xi) < 0, which is a contradiction to (5.5). Thus F cannot shatter {x1, . . . , xD+1},
and so the VC dimension is at most D. �

Example 2.3. LetHk denote the indicators of all closed half-spaces in Rk, i.e. Hk = {x 7→ I(〈a, x〉+
b ≤ 0) : a ∈ Rk, b ∈ R}. The VC dimension ofHk is exactly equal to k + 1.

Example 2.4 (Spheres in Rk). Consider the sphere S a,b = {x ∈ Rk : ‖x − a‖2 ≤ b}, where (a, b) ∈
Rk×R+ specify its center and radius, respectively. Define the function fa,b(x) = ‖x‖22−2

∑k
j=1 a jx j +

‖a‖22 − b2, so that S a,b = {x ∈ Rk : fa,b(x) ≤ 0}. Let Sk = {x 7→ I{ fa,b(x) ≤ 0} : a ∈ Rk, b ≥ 0}. The
VC dimension of Sk is at most k + 2.

We leave the verification of the two examples above as homework.

6


	Bounds for the Expected Suprema
	Simple Bounds on the Rademacher Average Rn(F(x1,…, xn ))

