
MATH 281C: Mathematical Statistics

Lecture 4

1 Bennett’s Inequality

Let us recall the Hoeffding inequality from last lecture. It states that

P

{ n∑
i=1

(Xi − EXi) ≥ t
}
≤ exp

{
−2t2∑n

i=1(bi − ai)2

}
for every t ≥ 0, where X1, . . . , Xn are independent random variables with ai ≤ Xi ≤ bi almost surely.
We remarked that when

∑n
i=1 var(Xi) is much smaller than

∑n
i=1(bi−ai)2/4, and when the CLT holds,

the tail bound given by Hoeffding can be loose. Bennett’s inequality attempts to give tail bounds
which involve variances.

Theorem 1.1 (Hoeffding’s inequality). Suppose X1, . . . , Xn are independent random variables hav-
ing finite variances. Suppose Xi ≤ B almost surely for each i = 1, . . . , n (here B is deterministic).
Let V =

∑n
i=1 EX2

i . Then, for every t ≥ 0,

P

{ n∑
i=1

(Xi − EXi) ≥ t
}
≤ exp

{
−

V
B2 h

(
tB
V

)}
(4.1)

where

h(u) := (1 + u) log(1 + u) − u, u ≥ 0. (4.2)

Remark 1.1. Bennett’s inequality, as stated above, gives only the upper tail bound. To get the lower
bound, one needs to impose the assumption Xi ≥ −B. In this case, we get

P

{ n∑
i=1

(Xi − EXi) ≤ −t
}
≤ exp

{
−

V
B2 h

(
tB
V

)}
.

Remark 1.2. For the function h defined in (4.2), it is easy to see that

h(0) = 0, h′(0) = 0 and h′′(0) = 1.

Therefore, for u near 0, we have h(u) ≈ u2/2. Hence, when tB/V is small, the bound given by
Bennett’s inequality looks like

P

{ n∑
i=1

(Xi − EXi) ≥ t
}
≤ exp

{
−

V
B2 h

(
tB
V

)}
≈ exp

(
−t2

2V

)
.
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Thus Bennett’s inequality gives Gaussian-like tails with V =
∑n

i=1 EX2
i in some regimes.

As an example, suppose EXi = 0, var(Xi) = σ2 and Xi ≤ 1. Then V = nσ2 and Bennett’s
inequality gives

P

(
1
√

n

n∑
i=1

Xi ≥ t
)
≤ exp

{
−Vh

(
n1/2t

V

)}
= exp

{
−nσ2h

(
n1/2t

V

)}
.

When t is small compared to n1/2σ2, we get a Gaussian type bound.

Before proving Theorem 1.1, let us first simplify Bennett’s inequality by taking a closer look at
the function h given in (4.2). It can be shown that (homework) for any u ≥ 0,

h(u) = (1 + u) log(1 + u) − u ≥
u2

2(1 + u/3)
.

This leads to the following result, which is known as Bernstein’s inequality.

Theorem 1.2. Suppose X1, . . . , Xn are independent random variables with finite variances, and sup-
pose that max1≤i≤n |Xi| ≤ B almost surely for some constant B > 0. Let V =

∑n
i=1 EX2

i . Then, for
every t ≥ 0,

P

{ n∑
i=1

(Xi − EXi) ≥ t
}
≤ exp

{
−t2

2(V + tB/3)

}
and

P

{ n∑
i=1

(Xi − EXi) ≤ −t
}
≤ exp

{
−t2

2(V + tB/3)

}
.

Remark 1.3. There is a version of Bernstein’s inequality that replaces the boundedness assumption
by weaker moment restrictions. That is, assume moment of any order exists, and the k-th moment
is subject to certain growth condition for every k ≥ 2. See Theorem 2.10 in Boucheron, Lugosi and
Massart (2013).

Proof of Theorem 1.1. Without loss of generality, we assume B = 1; otherwise, it suffices to work
with X1/B, . . . , Xn/B.

This proof relies on the following observation. Let φ : R → R denote the function φ(u) =

eu −u−1. The map u 7→ φ(u)/u2 is increasing on R with φ(0)/02 = 1/2. I will leave the verification
of this fact as homework.

Let S =
∑n

i=1(Xi − EXi). Then, for every λ ≥ 0 as before,

P(S ≥ t) ≤ e−λtEeλ
∑n

i=1(Xi−EXi) = e−λte−λ
∑n

i=1 EXi

n∏
i=1

EeλXi , (4.3)

where we used the independence of X1, . . . , Xn. Now because Xi ≤ 1, we have λXi ≤ λ. Using the
monotonicity of u 7→ φ(u)/u2, we deduce that

φ(λXi)
(λXi)2 ≤

φ(λ)
λ2 ,
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which implies that

eλXi ≤ λXi + 1 + X2
i φ(λ).

Using this bound in the right-hand side of (4.3), we obtain

P(S ≥ t) ≤ e−λt−λ
∑n

i=1 EXi

n∏
i=1

{
1 + λEXi + φ(λ)EX2

i
}
.

By the trivial inequality 1 + x ≤ ex,

1 + λEXi + φ(λ)EX2
i ≤ eλEXi+φ(λ)EX2

i ,

implying

P(S ≥ t) ≤ e−λt+φ(λ)V ,

valid for every λ ≥ 0. We now optimize the above bound by taking the derivative with respect to λ
and setting it equal to zero to obtain:

−t + V(eλ − 1) = 0 ⇒ λ = log(1 + t/V).

For this value of λ, it is straightforward to obtain (4.1). �

The two bounds in Bernstein’s inequality can be combined to write

P

{∣∣∣∣∣∣ n∑
i=1

(Xi − EXi)

∣∣∣∣∣∣ ≥ t
}
≤ 2 exp

{
−t2

2(V + tB/3)

}
.

We can now attempt to find the value of t which makes the bound on the right-hand side above
exactly equal to α, i.e., we want to solve the equation

2 exp
{

−t2

2(V + tB/3)

}
= α.

This leads to the quadratic equation

t2 −
2B log(2/α)

3
t − 2V log(2/α) = 0

whose nonnegative solution is given by

t =
B log(2/α)

3
+

√
B2 log2(2/α)

9
+ 2V log(2/α) ≤

√
2V log(2/α) +

2B log(2/α)
3

.

Thus Bernstein’s inequality implies that, with probability at least 1 − α,∣∣∣∣∣∣1n
n∑

i=1

(Xi − EXi)

∣∣∣∣∣∣ ≤
√

2V log(2/α)
n

+
2B log(2α)

3n
.

Now if X1, . . . , Xn are iid with mean zero, variance σ2 and bounded in absolute value by B, then
V = nσ2 so that the inequality

|X̄n| ≤ σ

√
2 log(2/α)

n
+

2B log(2/α)
3n

(4.4)

holds with probability at least 1 − α. Note that if X1, . . . , Xn are iid normal, then X̄n is normal and
|X̄n| will be bounded by the first term in the right-hand side above with probability at least 1 − α.
Therefore, the deviation bound (4.4) agrees with the normal approximation bound except for the
smaller order term (which if of order 1/n; the leading term being of order 1/

√
n).
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2 Concentration of Supremum of Empirical Process

Let us now study the concentration behavior of

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E f (X1)

∣∣∣∣∣∣. (4.5)

We first introduce some notation. We denote the empirical (probability) measure of X1, . . . , Xn

by Pn. The probability measure Pn has the CDF Fn(x) = (1/n)
∑n

i=1 I(Xi ≤ x). The common
distribution of the iid random observations X1, . . . , Xn will be denoted by P. We also write

P f = E f (X1) and Pn f =
1
n

n∑
i=1

f (Xi).

The quantity in (4.5) can therefore be written as

sup
f∈F
|Pn f − P f | or sup

f∈F
|(Pn − P) f |.

The concentration inequality that we proved via the bounded differences inequality is the following.
Suppose that F consists of functions that are uniformly bounded by B, then

sup
f∈F
|Pn f − P f | ≤ E

(
sup
f∈F
|Pn f − P f |

)
+ B

√
2 log(1/α)

n
(4.6)

with probability 1 − α.
We remarked previously that when var( f (X1)) is small compared to B for every f ∈ F , this

inequality is not sharp. In such situations, it is much more helpful to use Talagrand’s concentration
inequality for the suprema of empirical processes, which is stronger than (4.6) and also deeper and
harder to prove. We shall give the statement of this inequality but not the proof (for a proof, you
can refer to Section 12.4 in Boucheron, Lugosi and Massart (2013)). Before stating Talagrand’s
inequality, let us look at a statistical application where it becomes necessary to deal with function
classes F where the variances are small compared to the uniform (upper) bound. This application
concerns the regression problem (it also applies similarly to the classification problem).

Example 2.1 (Bounded Regression). We have two random objects X and Y taking values in spaces
X and Y, respectively. Assume that Y is a bounded subinterval of the real line. The problem is to
predict Y ∈ Y on the basis of X ∈ X. A predictor (or estimator) is any function g which maps X to
R. The (test) error of an estimator g is defined by

L(g) := E{Y − g(X)}2.

The goal of regression is to construct an estimator with small error based on n iid observations
(X1,Y1), . . . , (Xn,Yn) having the same distribution as (X,Y). For an estimator g, its empirical error
is given by

Ln(g) :=
1
n

n∑
i=1

{Yi − g(Xi)}2.
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A natural strategy is to select a class of predictors G, and then to choose the predictor in G which
has the smallest empirical error, i.e.,

ĝn := argmin
g∈G

Ln(g).

The key question now is how good the predictor ĝn is in terms of test error, i.e., how small is its
error

L(̂gn) := E
[
{Y − ĝn(X)}2|X1,Y1, . . . , Xn,Yn

]
.

In particular, we are interested in how small L(̂gn) is compared to infg∈G L(g). Suppose that this
infimum is achieved at some g∗ ∈ G (oracle). To bound L(̂gn) − L(g∗) (≥ 0), it is natural to write

L(̂gn) − L(g∗) = L(̂gn) − Ln(̂gn) + Ln(̂gn) − Ln(g∗)︸             ︷︷             ︸
≤ 0

+Ln(g∗) − L(g∗)

≤ L(̂gn) − Ln(̂gn) + Ln(g∗) − L(g∗).

We can now use the Empirical Process Notion. Let P denote the joint distribution of (X,Y), and Pn

denote the empirical distribution of (X1,Y1), . . . , (Xn,Yn). Let F denote the class of all functions
(x, y) 7→ {y − g(x)}2 as g varies over G.

With this notation, the above inequality becomes

P( f̂n − f ∗) ≤ (P − Pn)( f̂n − f ∗), (4.7)

where f̂n(x, y) := {y − ĝn(x)}2 and f ∗(x, y) := {y − g∗(x)}2. In order to proceed further, we need to
bound the right-hand side above. A crude bound is

(P − Pn)( f̂n − f ∗) ≤ 2 sup
f∈F
|Pn f − P f |. (4.8)

If we now assume that the class of functions F is uniformly bounded by B, we can use the con-
centration inequality (4.6). This will give some bound on L(̂gn) − L(g∗) provided one can control
the expectation (we will discuss this topic later). It is important now to note that this method will
never give a bound better than n−1/2 for L(̂gn) − L(g∗). This is because there is already a term of
n−1/2 in the right-hand side of (4.6). But in regression, at least for small classes G (such as finite
dimensional function class), we would expect the test error to decay much faster than n−1/2 (such as
at the n−1 rate). Such fast rates cannot be proved by this method.

To prove faster rates, one needs to use a technique called “localization” instead of the crude
bound (4.8). Let δ̂ denote the left-hand side of (4.7), and the goal is to derive upper bounds for δ̂.
Inequality (4.8) implies that

δ̂ ≤ sup
f∈F :P( f− f ∗)≤̂δ

(P − Pn)( f − f ∗).

This is a bit complicated because the class of functions in the supremum depends on δ̂ and hence is
random. To simplify the problem, let us ignore this for the moment and focus on

sup
f∈F :P( f− f ∗)≤δ

(P − Pn)( f − f ∗) (4.9)
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for a deterministic but small δ. The key is to realize that the functions involved here have small
variances (at least in the well specified case where g∗(x) = E(Y |X = x)). Indeed, in the well
specified case, we have

P( f − f ∗) = E
[
{Y − g(X)}2 − {Y − g∗(X)}2

]
= E{g(X) − g∗(X)}2.

Hence when P( f − f ∗) ≤ δ, we have

var( f − f ∗) ≤ E{ f (X,Y) − f ∗(X,Y)}2

= E
[
{Y − g(X)}2 − {Y − g∗(X)}2

]2

= E
[
{2Y − g(X) − g∗(X)}{g(X) − g∗(X)}

]2

≤ CBE{g(X) − g∗(X)}2 ≤ CBδ.

If we use the concentration inequality (4.6) to control (4.9), the resulting bound will be at least
CBn−1/2 that is independent of δ. This will not lead to any faster rates. However, Talagrand’s
inequality will give a better bound under small variances. Together with suitable bounds on the
expectation, one will obtain faster rates for regression under appropriate assumptions on G.

Similar analysis can be done for classification under certain assumptions.

Let us now state Talagrand’s concentration inequality for empirical processes. As before, as-
sume that F is uniformly bounded by a constant B. Then, letting Z := sup f∈F |Pn f − P f |, we
have

Z ≤ C1E(Z) + C2

√
sup
f∈F

var( f (X1))
log(1/α)

n
+ C3

B log(1/α)
n

with probability at least 1 − α. Here C1–C3 are universal constants which can be made explicit.
Note that the leading terms are E(Z) and the second term which only involves the variances. The
last term is of order 1/n. Bousquet (2003) proved the following version of Talagrand’s inequality
with optimal constants; see Theorem 7.3 therein.

Theorem 2.1. Assume for each f ∈ F that E f (Xi) = 0 and supx∈X | f (x)| ≤ B. Let σ > 0 be such
that nσ2 ≥

∑n
i=1 sup f∈F E f 2(Xi). Write

Z = sup
f∈F

n∑
i=1

f (Xi) and v = nσ2 + 2E(Z).

Then, for any t ≥ 0,

P

{
Z ≥ E(Z) +

√
2vt +

Bt
3

}
≤ e−t.

After learning how to control E(Z), we will come back to regression and classification to provide
explicit error bounds on the test error for various classes G. We will use Talagrand’s inequality (or
Bousquet’s version of it) together with localization.

We will start with the topic of controlling the expectation in the next class.
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