
MATH 281C: Mathematical Statistics

Lecture 3

1 Hoeffding’s Inequality and Proof of Bounded Differences Inequality

One of the goals of this lecture is to prove the bounded difference inequality. We will prove an-
other standard concentration inequality, called Hoeffding’s inequality, and then tweak the proof of
Hoeffding’s inequality to yield the bounded differences inequality.

Theorem 1.1 (Hoeffding’s inequality). Suppose ξ1, . . . , ξn are independent random variables. Sup-
pose a1, . . . , an, b1, . . . , bn are constants such that ai ≤ ξi ≤ bi almost surely for each i = 1, . . . , n.
Then, for every t ≥ 0,

P

{ n∑
i=1

(ξi − Eξi) ≥ t
}
≤ exp

{
−2t2∑n

i=1(bi − ai)2

}
(3.1)

and

P

{ n∑
i=1

(ξi − Eξi) ≤ −t
}
≤ exp

{
−2t2∑n

i=1(bi − ai)2

}
.

Proof. Let S n =
∑n

i=1(ξi − Eξi), and write (for a fixed λ ≥ 0)

P(S n ≥ t) = P(eλS n ≥ eλt) ≤ e−λtEeλS n = exp{−λt + ψS n(λ)},

where ψS n := logEeλS n is the log moment generating function (MGF) of S n. Now by the indepen-
dence of ξ1, . . . , ξn,

ψS n(λ) = logE exp
{
λ

n∑
i=1

(ξi − Eξi)
}

=

n∑
i=1

logEeλ(ξi−Eξi) =

n∑
i=1

ψξ−Eξi(λ),

where ψξ−Eξi(·) denotes the log MGF of ξi − Eξi. Fix 1 ≤ i ≤ n, define U = ξi − Eξi. To bound
ψU(λ), note that EU = 0 and ai − Eξi ≤ U ≤ bi − Eξi almost surely. By the second order Taylor
expansion of ψU(λ) around 0, we have

ψU(λ) = ψU(0) + λψ′U(0) +
λ2

2
ψ′′U(λ′)

for some 0 ≤ λ′ ≤ λ. Note that ψU(0) = logE(1) = 0. Also

ψ′U(λ) =
1
EeλU

d
dλ
E(eλU) =

E(UeλU)
EeλU ,
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so that ψ′U(0) = EU = 0. And

ψ′′U(λ) = E

(
U2 eλU

EeλU

)
−

(
EUeλU

EeλU

)2

.

Let V be a random variable whose “density” with respect to that of U is eλU/(EeλU), i.e.,

dPV =
eλU

EeλU dPU .

Let FU be the CDF of U. For any given λ, we can define the function FV as

FV (u) =
1
EeλU

∫ u

−∞

eλudFU(u), u ∈ R.

It is easy to verify that FV is indeed a CDF. Then we let V be a random variable whose CDF is FV .
Based on this construction, it can be shown that ψ′′U(λ) = var(V) ≥ 0. Also, because U is supported
on [ai−Eξi, bi−Eξi] (so that its “density” vanishes outside the interval), V is supported on the same
interval. Consequently,

ψ′′U(λ) = var(V) = inf
m∈R
E(V − m)2 ≤ E(V − η)2 ≤

(bi − ai)2

4
,

where η is the mid-point of [ai − Eξi, bi − Eξi]. We have thus proved that ψ′′U(λ) ≤ (bi − ai)2/4 for
every λ ≥ 0. This, along with ψU(0) = 0 and ψ′U(0) = 0, implies

ψU(λ) ≤
(bi − ai)2

8
λ2.

As a result,

ψS (λ) =

n∑
i=1

ψξi−Eξi(λ) ≤
λ2

8

n∑
i=1

(bi − ai)2,

and consequently,

P(S n ≥ t) ≤ exp
{
−λt +

λ2

8

n∑
i=1

(bi − ai)2
}
, for every λ ≥ 0.

We can optimize this bound over λ ≥ 0 by setting

λ =
4t∑n

i=1(bi − ai)2

to prove (3.1). To prove the lower tail inequality, simply apply (3.1) to −ξ1, . . . ,−ξn. �

The proof given above bounds the probability P(S n ≥ t) in terms of the MGF of S n. This
technique is known as the Cramér-Chernoff method.
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1.1 Remarks

Consider the following special case of Hoeffding’s inequality: Suppose X1, . . . , Xn are iid with
EXi = µ, var(Xi) = σ2 and a ≤ Xi ≤ b almost surely (a and b are constants). Suppose X̄n =

(X1 + · · · + Xn)/n. Hoeffding’s inequality then gives

P
{
n1/2(X̄n − µ) ≥ t

}
≤ exp

{
−2t2

(b − a)2

}
for all t ≥ 0. (3.2)

Is this a good/tight bound? By “good” here, we mean if the probability on the left-hand side above
is close to the bound on the right or if the bound is much looser. To answer this question, we of
course need a way of approximately computing the probability on the left-hand side. A natural way
of doing this is via invoking the Central Limit Theorem (assuming that the CLT is valid). Indeed
CLT states that

n1/2(X̄n − µ)
d
−→ N(0, σ2) (as n→ ∞).

provided that the distribution of Xi has finite second moment. Thus we may expect

P
{
n1/2(X̄n − µ) ≥ t

}
≈ P

{
N(0, σ2) ≥ t

}
when n is large and when CLT holds. What is P{N(0, σ2) ≥ t}? We can bound this again by the
Cramér-Chernoff method: for every λ ≥ 0,

P{N(0, σ2) ≥ t} ≤ exp
{
−λt + ψZ(λ)

}
with Z ∼ N(0, σ2).

It is known that EeλZ = eλ
2σ2/2, and hence ψZ(λ) = λ2σ2/2. It follows that

P{N(0, σ2) ≥ t} ≤ inf
λ≥0

exp
(
−λt +

1
2
λ2σ2

)
= exp

(
−t2

2σ2

)
, for every t ≥ 0. (3.3)

Is this bound sharp? For standard normal random variable Z0, it can be shown that (exercise) for
any t > 0,

t
1 + t2

1
√

2π
e−t2/2 ≤ P(Z0 ≥ t) ≤

1
t

1
√

2π
e−t2/2.

So e−t2/(2σ2) is the correct exponential term controlling the behavior of P{N(0, σ2) ≥ t}. Now let us
compare Hoeffding’s result with the bound (3.3). Hoeffding gives the bound

exp
{
−2t2

(b − a)2

}
,

while normal approximation suggests

exp
(
−t2

2σ2

)
.

Note that, because a ≤ X1 ≤ b almost surely,

σ2 = var(X1) ≤
(b − a)2

4
.

Thus in the regime where CLT holds, Hoeffding is a looser inequality where the variance σ2 is
replaced by the upper bound (b − a)2/4. This looseness can be quite pronounced when X1 puts less
mass near the end points a and b. Here is a potential statistical implication of this looseness.
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Example 1.1. Suppose X1, . . . , Xn are iid with EXi = µ, var(Xi) = σ2 and a ≤ Xi ≤ b almost surely.
Suppose σ2, a and b are known while µ is unknown, and that we seek a confidence interval for µ.
There are two ways of solving this problem.

The first method uses the CLT (normal approximation). Indeed, by CLT:

P

{∣∣∣∣∣n1/2(X̄n − µ)
σ

∣∣∣∣∣ ≤ t
}
→ P(|Z0| ≤ t)

as n→ ∞ for each t, where Z0 ∼ N(0, 1). Thus

P

{∣∣∣∣∣n1/2(X̄n − µ)
σ

∣∣∣∣∣ ≤ zα/2

}
→ P(|Z0| ≤ aα/2) = 1 − α,

where zα/2 is defined so that the last equality above holds. This leads to the following confidence
interval (CI) for µ: [

X̄n −
σ
√

n
zα/2, X̄n +

σ
√

n
zα/2

]
. (3.4)

Note that this is an “asymptotically valid” 100(1 − α)% CI for µ. Its finite sample coverage, on the
other hand, may not be 100(1 − α)%.

The second method for constructing a CI for µ uses Hoeffding’s inequality which states that

P
{
|n1/2(X̄n − µ)

∣∣∣ ≥ t
}
≤ 2 exp

{
−2t2

(b − a)2

}
for every t ≥ 0.

Thus, by taking

t = (b − a)

√
log(2/α)

2
,

one gets the following CI for µ:[
X̄n −

b − a
√

n

√
log(2/α)

2
, X̄n +

b − a
√

n

√
log(2/α)

2

]
. (3.5)

This inequality has guaranteed finite sample coverage 100(1−α)%. But this interval might be much
too wide compared to (3.4). Which of the two intervals (3.4) and (3.5) would you prefer?

1.2 Hoeffding’s Inequality for Martingale Differences

Theorem 1.2 (Hoeffding’s inequality for martingale differences). Suppose F1, . . . ,Fn are increas-
ing σ-fields, and suppose ξ1, . . . , ξn are random variables with ξi being Fi-measurable. Assume
that

E
(
ξi − Eξi|Fi−1

)
= 0 almost surely (3.6)

for all i = 1, . . . , n. Also assume that, for each 1 ≤ i ≤ n, the conditional distribution of ξi given
Fi−1 is supported on an interval whose length is bounded from above by Ri (deterministic quantity).
Then, for every t ≥ 0,

P

{ n∑
i=1

(ξi − Eξi) ≥ t
}
≤ exp

(
−2t2∑n
i=1 R2

i

)
(3.7)
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and

P

{ n∑
i=1

(ξi − Eξi) ≤ −t
}
≤ exp

(
−2t2∑n
i=1 R2

i

)
.

Remark 1.1. Assumption (3.6) means that {(S j,F j)}nj=1 is a martingale, where S j =
∑ j

i=1(ξi −Eξi).
Therefore, the sequence {ξi − Eξi}

n
i=1 is a martingale difference sequence.

Proof. Let S n =
∑n

i=1(ξi − Eξi). As before, for every t ≥ 0 and λ ≥ 0,

P(S n ≥ t) ≤ exp
{
−λt + ψS n(λ)

}
with

ψS n(λ) = logEeλS n = logE exp
{
λ

n∑
i=1

(ξi − Eξi)
}
.

Observe that

E
(
eλS n |Fn−1

)
= exp

{
λ

n−1∑
i=1

(ξi − Eξi)
}
× E

{
eλ(ξn−Eξn)|Fn−1

}
.

Now because Eξn = E(ξn|Fn−1), we can use exactly the same argument as in the proof of Hoeffding’s
inequality in the independent case (via second order Taylor expansion of the log MGF) (exercise)
to deduce that

E
{
eλ(ξn−Eξn)|Fn−1

}
≤ eλ

2R2
n/8,

and this gives

EeλS n ≤ eλ
2R2

n/8 × E exp
{
λ

n−1∑
i=1

(ξi − Eξi)
}
.

Now repeat the above argument (by conditioning on Fn−2, then Fn−3 and so on) to deduce that

EeλS n ≤ exp
(
λ2

8

n∑
i=1

R2
i

)
.

This gives

P(S n ≥ t) ≤ exp
(
−λt +

λ2

8

n∑
i=1

R2
i

)
.

Optimize the right-hand side over λ ≥ 0 gives (3.7). For the proof of the lower tail inequality, argue
with −ξi in place of ξi. �
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1.3 Proof of the Bounded Differences Inequality

We now prove the bounded differences inequality as a simple consequence of Theorem 1.2.

Theorem 1.3 (Bounded Differences Inequality). Suppose X1, . . . , Xn are independent random vari-
ables taking values in a set X. Suppose g : X × · · · × X → R is a function satisfying the following
“bounded differences” assumption:∣∣∣g(x1, . . . , xn) − g(z1, . . . , zn)

∣∣∣ ≤ n∑
i=1

ciI(xi , zi) (3.8)

for some constants c1, . . . , cn. Then, for every t ≥ 0,

P
{
g(X1, . . . , Xn) ≥ Eg(X1, . . . , Xn) + t

}
≤ exp

(
−2t2∑n
i=1 c2

i

)
(3.9)

and

P
{
g(X1, . . . , Xn) ≤ Eg(X1, . . . , Xn) − t

}
≤ exp

(
−2t2∑n
i=1 c2

i

)
.

Proof. We will apply the martingale Hoeffding inequality to

ξi = E
{
g(X1, . . . , Xn)|X1, . . . , Xi

}
− E

{
g(X1, . . . , Xn)|X1, . . . , Xi−1

}
, i = 1, . . . , n,

and Fi taken to be the sigma field generated by X1, . . . , Xi for i = 1, . . . , n. Clearly, ξi, which is a
function of X1, . . . , Xi, is Fi measurable and satisfies Eξi = 0. Also, check that

E(ξi|Fi−1) = 0.

Thus {(ξi,Fi)} is a martingale difference sequence. We now argue that the conditional distribution
of ξi given Fi−1 is supported on an interval of length bounded from above by ci. For this, let us look
at the conditional distribution of ξi given X1, . . . , Xi−1. Fix X1, . . . , Xi−1 at x1, . . . , xi−1, so that ξi is a
function solely on Xi and we need to look at the range of ξi as Xi = x varies. We therefore need to
look at the values

x 7→ E{g(X1, . . . , Xn)|X1 = x1, . . . , Xi−1 = xi−1, Xi = x} − E{g(X1, . . . , Xn)|X1 = x1, . . . , Xi−1 = xi−1}

as x varies and x1, . . . , xi−1 are fixed. Now, by independence of X1, . . . , Xn, the right-hand side above
equals

E{g(x1, . . . , xi−1, x, Xi+1, . . . , Xn)} − constant,

where the “constant” term depends on x1, . . . , xi−1. Thus we can take Ri to be

Ri := sup
x,x′∈X

∣∣∣Eg(x1, . . . , xi−1, x, Xi+1, . . . , Xn) − Eg(x1, . . . , xi−1, x′, Xi+1, . . . , Xn)
∣∣∣

≤ sup
x,x′∈X

E
∣∣∣g(x1, . . . , xi−1, x, Xi+1, . . . , Xn) − g(x1, . . . , xi−1, x′, Xi+1, . . . , Xn)

∣∣∣.
It is clear now that Ri ≤ ci by the bounded differences assumption (1.1). We can therefore apply
Theorem 1.2 with Ri = ci, which finishes the proof of Theorem 1.3. �
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