MATH 281C: Mathematical Statistics

Lecture 3

1 Hoeffding’s Inequality and Proof of Bounded Differences Inequality

One of the goals of this lecture is to prove the bounded difference inequality. We will prove an-
other standard concentration inequality, called Hoeffding’s inequality, and then tweak the proof of
Hoeffding’s inequality to yield the bounded differences inequality.

Theorem 1.1 (Hoeftfding’s inequality). Suppose &1,...,&, are independent random variables. Sup-
pose aiy,...,an, by, ..., b, are constants such that a; < & < b; almost surely foreachi = 1,...,n.
Then, for every ¢ > 0,
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P{;(& ~E&) > t} < exp{—z?zl(bi - ai)2} 3.1)

and
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P{;(& -E¢&) < —t} < exp{—z?:1(bi — ai)z},

Proof. LetS, = ¥, (& — BE;), and write (for a fixed 4 > 0)
P(S, > 1) = P(e™" > V) < e VEe™ = exp{-At + ¢, (1)},

where 5, := logEe'" is the log moment generating function (MGF) of S,,. Now by the indepen-
dence of &1,...,&,,

¥s, () = logEexp{ﬂ DGR E&)} = ) log Be 6750 = Xy g (D),
i=1 i=1 i=1

where Y¢ g (-) denotes the log MGF of & — E&;. Fix 1 < i < n, define U = & — E&;. To bound
Yu(d), note that EU = 0 and a; — E¢; < U < b; — E¢; almost surely. By the second order Taylor
expansion of (1) around 0, we have
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Yu(D) = yu0) + Ay 0) + 3!//&(/1')
for some 0 < A’ < A. Note that ¢y (0) = log E(1) = 0. Also
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so that ,(0) = EU = 0. And
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Let V be a random variable whose “density” with respect to that of U is eV /(BetY), ie.,

e/lU

dPy = =

dPy.

Let Fy be the CDF of U. For any given A, we can define the function Fy as

1 U
Fy(u) = T f eM“dFy(u), ucR.
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It is easy to verify that Fy is indeed a CDF. Then we let V be a random variable whose CDF is Fy.
Based on this construction, it can be shown that ¢}/(1) = var(V) > 0. Also, because U is supported
on [a; —E&;, b; — B&;] (so that its “density” vanishes outside the interval), V is supported on the same
interval. Consequently,

(bi — a;)?

WG = var(V) = inf B(V = m)* <B(V - )’ < —— =,

where 7 is the mid-point of [a; — E&;, b; — E&;]. We have thus proved that w;}(/l) < (b; — a;)*/4 for
every A > 0. This, along with ¢(0) = 0 and ¥/,(0) = 0, implies

a2
Vo) < %ﬁ.

As aresult,
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and consequently,
2 ¢
P(S, >1) < exp{—/lt tg Z;(bi - a,~)2}, for every A > 0.
=

We can optimize this bound over 4 > 0 by setting

4¢
A= N (B 2
Z,‘: l(bi - a;)
to prove (3.1). To prove the lower tail inequality, simply apply (3.1) to =1, ..., =&,. O

The proof given above bounds the probability P(S, > f) in terms of the MGF of S,. This
technique is known as the Cramér-Chernoff method.



1.1 Remarks

Consider the following special case of Hoeffding’s inequality: Suppose Xi,..., X, are iid with
EX; = u, var(X;) = 0? and a < X; < b almost surely (a and b are constants). Suppose X, =
(X1 + -+ + X,;)/n. Hoeftding’s inequality then gives

2

(b-a)?

P{n'/2(X, — ) > 1} < exp{ } for all £ > 0. (3.2)
Is this a good/tight bound? By “good” here, we mean if the probability on the left-hand side above
is close to the bound on the right or if the bound is much looser. To answer this question, we of
course need a way of approximately computing the probability on the left-hand side. A natural way
of doing this is via invoking the Central Limit Theorem (assuming that the CLT is valid). Indeed
CLT states that

12X, - 1) S N0, 02) (as n — oo).

provided that the distribution of X; has finite second moment. Thus we may expect
P{n'/?(X, — p) > 1} ~ PN(0,0%) > 1}

when 7 is large and when CLT holds. What is P{N(O0, 0?) > 1}? We can bound this again by the
Cramér-Chernoff method: for every 4 > 0,

P{N(0,02) > 1} < exp{—At + yz(D)} with Z ~ N(0, ).

It is known that EetZ = ¢/ 2. and hence yz(1) = 2202 /2. It follows that
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), for every > 0. 3.3)

Is this bound sharp? For standard normal random variable Zy, it can be shown that (exercise) for
any t > 0,

11
L g P(Zy > 1) < ———e 12,
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So /27 is the correct exponential term controlling the behavior of P{N (0, o2) > t}. Now let us
compare Hoeffding’s result with the bound (3.3). Hoeffding gives the bound

=
exp ool

_p
exp(ﬁ)

Note that, because a < X| < b almost surely,

while normal approximation suggests

b— 2
ol = var(X;) < ( 4a) .

Thus in the regime where CLT holds, Hoeffding is a looser inequality where the variance o is
replaced by the upper bound (b — a)?/4. This looseness can be quite pronounced when X; puts less

mass near the end points a and b. Here is a potential statistical implication of this looseness.



Example 1.1. Suppose Xi, ..., X, are iid with EX; = g, var(X;) = o?and a < X; < b almost surely.
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Suppose 0, a and b are known while y is unknown, and that we seek a confidence interval for u.

There are two ways of solving this problem.
The first method uses the CLT (normal approximation). Indeed, by CLT:

2%, _
p{ M‘ < t} — P(Zy| < 1)
o
as n — oo for each ¢, where Zy ~ N(0, 1). Thus

i

where z,/2 is defined so that the last equality above holds. This leads to the following confidence
interval (CI) for u:

n' (% - )

= Za/Z} - P(|Zo] < agp) =1 -a,

- a = (o
Xn__a ,Xn+_a . 3.4
o= e o+ oD

Note that this is an “asymptotically valid” 100(1 — @)% CI for u. Its finite sample coverage, on the
other hand, may not be 100(1 — a)%.
The second method for constructing a CI for u uses Hoeffding’s inequality which states that

2

(b - a)?

= (b—a) /10g(2/a)’
2
one gets the following CI for u:
- - log(2 - - log(2
[Xn_ b—a [log( /a)’ Fan b—a [log( /a)]. (3.5)
vi V72 Vi V72

This inequality has guaranteed finite sample coverage 100(1 —a)%. But this interval might be much
too wide compared to (3.4). Which of the two intervals (3.4) and (3.5) would you prefer?

P{n'/?(X, —,u)| >1} < 26Xp{ } for every 1 > 0.

Thus, by taking

1.2 Hoeffding’s Inequality for Martingale Differences

Theorem 1.2 (Hoeffding’s inequality for martingale differences). Suppose 71, ..., ¥, are increas-
ing o-fields, and suppose &1, ...,&, are random variables with &; being 7;-measurable. Assume
that

E(& — E&i|Fi-1) = 0 almost surely (3.6)

foralli = 1,...,n. Also assume that, for each 1 < i < n, the conditional distribution of &; given
Fi-1 is supported on an interval whose length is bounded from above by R; (deterministic quantity).
Then, for every ¢ > 0,
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ﬁ2@4%m%sw{gk) G3.7)

i=1



and

1 272
P{Z}(& ~B&) < —r} < exp( 3 Rz)‘

Remark 1.1. Assumption (3.6) means that {(S , (Fj)}?:l is a martingale, where § ; = Z{z (& —E&).
Therefore, the sequence {§; — E&;}Y | is a martingale difference sequence.

Proof. LetS, = 3", (& — E&). As before, for every t > 0O and A4 > 0,
B(S, > 1) < exp{=At + s, (D)

with
U, (4) = log Be'" = logEexp{A D& E&-)}.
i=1

Observe that

n—1

E(e"|Fu1) = exp{A & - E&-)} X Bfe SN, )

i=1

Now because E&, = E(&,|7,-1), we can use exactly the same argument as in the proof of Hoeftfding’s
inequality in the independent case (via second order Taylor expansion of the log MGF) (exercise)
to deduce that

E{eM 6B |7} < RS,

and this gives

n—1

Ee'Sn < oVRi/8 Eexp{/l & - Efi)}-

i=1

Now repeat the above argument (by conditioning on ¥,_,, then ¥,_3 and so on) to deduce that
2
Ee®r < exp(g Z Rlz)
i=1
This gives
PR
P(S,>1) < exp(—/lt + r ZR?)
i=1

Optimize the right-hand side over 4 > 0 gives (3.7). For the proof of the lower tail inequality, argue
with —¢; in place of &;. O



1.3 Proof of the Bounded Differences Inequality

We now prove the bounded differences inequality as a simple consequence of Theorem 1.2.

Theorem 1.3 (Bounded Differences Inequality). Suppose X1, ..., X, are independent random vari-
ables taking values in a set X. Suppose g : X X --- X X — R is a function satisfying the following
“bounded differences” assumption:

n

lgCx1 ) = (21, z)| < D il (xi # 2) (3.8)
i=1
for some constants cy, ..., c,. Then, for every t > 0,
27
P{g(Xl,...,Xn)ZEg(Xl,...,Xn)+t}Sexp ”—02 (39)
i=1%

and

272
P{g(X1,...,Xn) <Bg(X1,...,Xy) — 1} < exp(—z).

n
i=1 €

Proof. We will apply the martingale Hoeffding inequality to
é:i = E{g(Xl’ e ’Xl’l)|X19 e ’Xl} - E{g(X19 e 9Xn)|X1’ e ’Xi—l}’ l = 1’ - N,

and ¥; taken to be the sigma field generated by Xi,...,X; fori = 1,...,n. Clearly, &, which is a
function of X1, ..., X;, is #; measurable and satisfies E&; = 0. Also, check that

E(ilFi-1) = 0.

Thus {(&;, F7)} is a martingale difference sequence. We now argue that the conditional distribution
of &; given F;_; is supported on an interval of length bounded from above by c;. For this, let us look
at the conditional distribution of &; given X1, ..., X;—1. Fix X1,...,X;_j atxj,...,x;_1, sothat & is a
function solely on X; and we need to look at the range of &; as X; = x varies. We therefore need to
look at the values

x - BlgXn, . X)Xy = x50, X = xi-1, Xy = xp = Elg(Xq, .., X)IXn = x1,..0, Xic1 = xi-1)

as x varies and x1, ..., x;_ are fixed. Now, by independence of X1, ..., X, the right-hand side above
equals
E{g(x1,...,xi-1, X, Xi+1, ..., Xn)} — constant,
where the “constant” term depends on xi, ..., x;—1. Thus we can take R; to be
R; := sup |Eg(x1, s Xie s X Xin 1y oo, X)) — Bg(xy, oo xic, X Xigts ,Xn)|
x,x’'eX

< sup Elg(-xl’ s ’xi—lax’Xi+1’ e ’Xn) - g(-xla cee $xi—1’xl’Xi+1’ s ’Xl’l)l'

xx'eX
It is clear now that R; < ¢; by the bounded differences assumption (1.1). We can therefore apply
Theorem 1.2 with R; = ¢;, which finishes the proof of Theorem 1.3. O
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