
MATH 281C: Mathematical Statistics

Lecture 2

Let us first start by giving an introduction to Uniform Central Limit Theorems (a topic we will
study in detail later). Next, we will talk about measure concentration properties of (1/n)

∑n
i=1 f (Xi)−

E f (X1).

1 Uniform Central Limit Theorems

Recall the uniform empirical process

Un(t) = n1/2{Fn(t) − t}, t ∈ [0, 1],

where Fn(t) = (1/n)
∑n

i=1 I(Xi ≤ t) with X1, . . . , Xn ∼ Unif[0, 1]. Also, let {U(t), 0 ≤ t ≤ 1} be the
Brownian bridge on [0, 1].
Construction of Brownian bridge. We say the stochastic process {W(t), t ≥ 0} is a standard Wiener
process if it satisfies

(i) For t ≥ 0, W(t) ∼ N(0, t), and W(0) = 0;

(ii) For 0 ≤ t1 < t2 < · · · < tk < ∞, W(t2) − W(t1),W(t3) − W(t2), . . . ,W(tn) − W(tn−1) are
independent, and for any s < t, W(t) −W(s) is equal in distribution to W(t − s);

(iii) W(t) is continuous in t.

For every T > 0, U(t; T ) := W(t) − t
T W(T ) is a Brownian bridge on [0,T ].

What is the meaning of the statement that the sequence of stochastic processes {Un(t), t ∈ [0, 1]}
converges in distribution to {U(t), t ∈ [0, 1]}? To understand this, let us first recall the usual notion
of convergence in distribution for sequences of random vectors. We say that a sequence of random
vectors {Zn} taking values in Rk converges in distribution to Z if and only if

Eh(Zn)→ Eh(Z) as n→ ∞

for every bounded continuous real-valued function h : Rk → R.
We can attempt a direct generalization of this to define convergence of Un(·) to U(·) as a stochas-

tic process. These processes take values not in Rk but in the space of all bounded functions on
[0, 1]. Denote this space by `∞([0, 1]). This space can be equipped with the supremum metric:
‖g1 − g2‖∞ := sup0≤t≤1 |g1(t) − g2(t)|, for g1, g2 ∈ `

∞([0, 1]). We can then say that Un converges in
distribution to U as a stochastic process provided

Eh(Un)→ Eh(U) as n→ ∞ (1.1)
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for every bounded and continuous real-valued function h : `∞([0, 1]) → R. This definition al-
most makes sense except for one measure-theoretic issue. It turns out that there exist bounded and
continuous real-valued functions h : `∞([0, 1]) → R for which the random variable h(Un) is not
measurable. To overcome this technical issue, we can replace the left-hand side in (1.1) by its outer
expectation E∗h(Un) (formally defined later).

In this sense, Donsker showed that Un converges in distribution to Brownian bridge.
Let us now return to the general case. Here we consider the stochastic process

Gn( f ) := n1/2
{

1
n

n∑
i=1

f (Xi) − E f (X1)
}

for f ∈ F .

Under a simple assumption such as sup f∈F | f (x)| < ∞ for every x ∈ X, the function f 7→ Gn( f )
belongs to the space `∞(F ). We then say that the uniform central limit theorem holds over F if the
stochastic process {Gn( f ), f ∈ F } converges in distribution in `∞(F ) to a process {G( f ), f ∈ F }
as n → ∞. The limit process {G( f ), f ∈ F } will have the property that, for every f1, . . . , fk ∈ F ,
the random vector (G( f1), . . . ,G( fk))ᵀ will have a multivariate normal distribution having the same
covariance as (Gn( f1), . . . ,Gn( fk))ᵀ.

We shall characterize convergence in distribution in `∞(F ), and then see some sufficient condi-
tions on F that ensure that the Uniform CLT holds.

The following are some statistical applications of Uniform CLTs.

Example 1.1 (Goodness-of-fit testing). Suppose we observe iid observations X1, . . . , Xn from a
CDF F, and we want to test the null hypothesis H0 : F = F0 versus the alternative hypothesis
H1 : F , F0. Here F0 is a fixed (known) distribution function.

Kolmogorov recommended testing this hypothesis via the statistic

Dn := n1/2 sup
x∈R
|Fn(x) − F0(x)|,

where Fn is the empirical CDF of the data X1, . . . , Xn. The idea is to reject H0 when Dn is large. To
calculate the p-value of this test, the null distribution *(i.e., the distribution of Dn under H0) needs
to be determined. An interesting property of the null distribution of Dn is that the null distribution
does not depend on F0 as long as F0 is continuous.

Assume F0 is continuous. Then under the null, F0(X1), . . . , F0(Xn) are iid following the uniform
distribution Unif [0, 1], so that

sup
x∈R
|Fn(x) − F0(x)| = sup

t∈[0,1]

∣∣∣∣∣∣1n
n∑

i=1

I{F0(Xi) ≤ t} − t

∣∣∣∣∣∣ (by change of variable t = F0(x)).

Therefore, we can compute the null distribution of Dn assuming that F0 is the uniform distribution
on [0, 1]. In this case, we can write

Dn = sup
0≤t≤1

|Un(t)|,

where Un(·) is the uniform empirical process.
The fact that {Un(t), t ∈ [0, 1]} converges in distribution to a Brownian bridge {U(t), t ∈ [0, 1]}

as n→ ∞ allows one to claim that

lim
n→∞
P(Dn ≤ x) = P

{
sup

0≤t≤1
|U(t)| ≤ x

}
, for every x > 0.
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The latter probability can be computed exactly; see, for example, Proposition 12.3.4 in Dudley
(2002). Thus the uniform central limit theorem gives a way of computing asymptotically valid
p-values for goodness-of-fit via the Kolmogorov statistic.

The same argument can be used for many related goodness-of-fit statistics such as

(1) Cramér-von Mises statistic:

Wn := n
∫
{Fn(x) − F0(x)}2dF0(x).

(2) Anderson-Darling statistic:

An := n
∫
{Fn(x) − F0(x)}2

F0(x){1 − F0(x)}
dF0(x).

(3) Smirnov statistic:

D+
n := n1/2 sup

x
{Fn(x) − F0(x)} and D−n = n1/2 sup

x
{F0(x) − Fn(x)}.

The asymptotic null distribution of all these statistics can be computed from Brownian bridge, and
this will be validated by the uniform CLT.

Example 1.2 (Asymptotic Distribution of MLE). Suppose X1, . . . , Xn are iid from an unknown
density pθ0 belonging to a known class {pθ : θ ∈ Θ ⊆ Rk}. Let θ̂n denote the MLE of θ0, defined as
the maximizer of

1
n

n∑
i=1

log pθ(Xi) over θ ∈ Θ.

A classical result is that, under some smoothness assumptions, n1/2(̂θn−θ0) converges in distribution
to N(0, I(θ0)−1), where I(θ0) denotes the k × k Fisher information matrix defined as

I(θ0) := E
{
∇θ log pθ(X) {∇θ log pθ(X)}ᵀ

}∣∣∣∣
θ=θ0

,

and the expectation is taken with respect to the density pθ.
What smoothness assumptions need to be imposed on pθ, θ ∈ Θ for this result to hold? Because

the result involves the information matrix I(θ0) that depends on gradients, a minimal assumption
seems to be that θ 7→ log pθ(x) is differentiable with respect to θ. Also, because of the presence of
the expectation in the definition of I(θ0), it should be okay if the derivative w.r.t. θ does not exist on
sets of measure zero under pθ0 (think about the density pθ(x) = exp(−|x − θ|/2)).

The classical proofs of this result assume, however, that this map allows derivatives of order
two, and sometimes even three. Using uniform central limit theorems, we will present later a proof
using a minimal differentiability assumption, called Differentiability in Quadratic Mean (DQM).

Example 1.3 (Asymptotic Distribution of M-estimators). Uniform central limit theorems can be
used to derive limiting distributions of other M-estimators as well. For example, consider the sample
median defined as

θ̂n := argmin
θ∈R

1
n

n∑
i=1

|Xi − θ|.
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Assuming that the CDF F of the observations is differentiable at its median θ0 with positive density
f (θ0), it can be proved that n1/2(̂θn − θ0) converges in distribution to N(0, (4 f 2(θ0))−1).

For the mode estimator defined as argmaxθ∈R
∑n

i=1 mθ(Xi) with mθ(x) = I(|x − θ| ≤ 1) and
Θ = R, the asymptotic distribution is much more complicated. The objective function is not even
continuous. The result is that

n1/3(̂θn − θ0)

converges in distribution to
argmax

h∈R

{
aZ(h) − bh2},

where {Z(h), h ∈ R} is a standard two-sided Brownian motion (Wiener process) starting from 0,

a = p(θ0 + 1) − p(θ0 − 1) and b =
1
2
{
p′(θ0 − 1) − p′(θ0 + 1)

}
.

Here p(·) represents the the density of the observations and it is assumed that p is unimodal and
symmetric w.r.t. mode θ0, i.e., p′(x) > 0 for x < θ0 and p′(x) < 0 for x > θ0. This result is
stated here just to illustrate that the limiting distributions of even simple-looking M-estimators can
be quite complicated. Later we will see how to prove these results via Uniform CLTs.

2 Concentration Results

Let us now start with our discussion of uniform laws of large numbers. The key object of study is

∆n = ∆n(X1, . . . , Xn) := sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E f (X1)

∣∣∣∣∣∣, (2.1)

where X1, . . . , Xn are iid random objects taking values in a space X, and F is a collection of real-
valued functions on X. We will argue that ∆n concentrates around its expectation. The is fairly easy
to prove when it is assumed that all the functions in F are bounded by a constant B > 0:

sup
x∈X
| f (x)| ≤ B for every f ∈ F . (2.2)

Under the above assumption, we will prove a concentration result for ∆n. This in fact is a direct
consequence of the bounded differences inequality.

Theorem 2.1 (Bounded Differences Inequality). Suppose X1, . . . , Xn are independent random vari-
ables taking values in a set X. Suppose g : X × · · · × X → R is a function satisfying the following
“bounded differences” assumption:

sup
x1,...,xn,x′i∈X

∣∣∣g(x1, . . . , xn) − g(x1, . . . , xi−1, x′i , xi+1, . . . , xn)
∣∣∣ ≤ ci (2.3)

for i = 1, . . . , n. Then, for every t ≥ 0,

P
{
g(X1, . . . , Xn) ≥ Eg(X1, . . . , Xn) + t

}
≤ exp

(
−2t2∑n
i=1 c2

i

)
(2.4)

and

P
{
g(X1, . . . , Xn) ≤ Eg(X1, . . . , Xn) − t

}
≤ exp

(
−2t2∑n
i=1 c2

i

)
. (2.5)
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Remark 2.1. The bounded differences condition (2.3) is equivalent to the following:∣∣∣g(x1, . . . , xn) − g(z1, . . . , zn)
∣∣∣ ≤ ci

whenever (x1, . . . , xn) and (z1, . . . , zn) differ in exactly the i-th coordinate. It is also equivalent to the
following condition:

∣∣∣g(x1, . . . , xn) − g(z1, . . . , zn)
∣∣∣ ≤ n∑

i=1

ciI(xi , zi) for all x1, . . . , xn, z1, . . . , zn ∈ X.

Theorem 2.1 can be seen as a quantification of the following qualitative statement of Talagrand:
‘A random variable that depends on (in a “smooth” way) the influence of many independent vari-
ables (but not too much on any of them) is essentially constant (i.e. concentrates)’ (Talagrand,
1996). We will prove this result in the next class.

Let us argue here that Theorem 2.1 implies a concentration inequality for ∆n(X1, . . . , Xn), de-
fined in (2.1), under condition (2.2). Let

g(x1, . . . , xn) = sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (xi) − E f (X1)

∣∣∣∣∣∣.
By replacing xi with x′i , we see that

g(x1, . . . , xi−1, x′i , xi+1, . . . , xn) = sup
f∈F

∣∣∣∣∣∣1n ∑
j,i

f (x j) +
1
n

f (x′i) − E f (X1)

∣∣∣∣∣∣
= sup

f∈F

∣∣∣∣∣∣1n
n∑

j=1

f (x j) − E f (X1) +
1
n

f (x′i) −
1
n

f (xi)

∣∣∣∣∣∣
≤ sup

f∈F

∣∣∣∣∣∣1n
n∑

j=1

f (x j) − E f (X1)

∣∣∣∣∣∣ +
2B
n
.

Taking supremum over f ∈ F on both sides, we obtain

g(x1, . . . , xi−1, x′i , xi+1, . . . , xn) ≤ g(x1, . . . , xi−1, xixi+1, . . . , xn) +
2B
n
.

Interchanging the roles of xi and x′i yields

∣∣∣g(x1, . . . , xi−1, x′i , xi+1, . . . , xn) − g(x1, . . . , xi−1, xixi+1, . . . , xn)
∣∣∣ ≤ 2B

n
,

so that (2.3) holds with ci = 2B/n. Theorem 2.1, specifically inequality (2.4), then gives

P
(
∆n ≥ E∆n + t

)
≤ exp

(
−nt2

2B2

)
, valid for any t ≥ 0.

Setting

δ = exp exp
(
−nt2

2B2

)
so that t = B

√
2 log(1/δ)

n
,
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we obtain that with probability at least 1 − δ,

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E f (X1)

∣∣∣∣∣∣ ≤ E
{

sup
f∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E f (X1)

∣∣∣∣∣∣
}

+ B

√
2 log(1/δ)

n
. (2.6)

This inequality implies that E∆n is usually the dominating term for understanding the behavior
of ∆n. This is because typically E∆n dominates the last term on the right-hand side of (2.6). Indeed,
for every f ∈ F ,

E∆n ≥ E

∣∣∣∣∣∣1n
n∑

i=1

f (Xi) − E f (X1)

∣∣∣∣∣∣. (2.7)

Because

E

{
1
n

n∑
i=1

f (Xi) − E f (X1)
}2

=
1
n

var( f (X1)),

it is reasonable to believe that the right-hand of (2.7) will typically be of order
√

var( f (X1))/n.
Unless var( f (X1)) is much smaller compared to B2 for every f ∈ F , the first term on the right-hand
side of (2.6) usually dominates the second, and hence in order to control the random quantity ∆n, it
suffices to focus on the expectation E∆n.

References

Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford Univ. Press, Oxford.

Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Univ. Press, Cambridge.

Talagrand, M. (1996). A new look at independence. The Annals of Probability 24 1–34.

6


	Uniform Central Limit Theorems
	Concentration Results

