
MATH 281C: Mathematical Statistics

Lecture 11

1 Bracketing Control

Our main empirical process bound so far is the following. Under the usual notation,

E sup
f∈F
|Pn f − P f | ≤

C
√

n
‖F‖L2(P)J(F,F ), (11.1)

where

J(F,F ) :=
∫ 1

0

√
1 + log sup

Q
M(ε‖F‖L2(Q),F , L2(Q)) dε.

Bracketing methods provide another upper bound for E sup f∈F |Pn f − P f | which we will describe
next. This bound will be very similar to (11.1) except that supQ M(ε‖F‖L2(Q),F , L2(Q)) will be
replaced by the ε-bracketing number of F in L2(P). Before we state this result, let us first define the
notion of bracketing numbers:

1. Given two real-valued functions ` and u on X, the bracket [`, u] is defined as the collection of
all functions f : X → R for which `(x) ≤ f (x) ≤ u(x) for all x ∈ X.

2. Given a probability measure P onX, the L2(P)-size of a bracket [`, u] is defines as ‖u−`‖L2(P).

3. LetF be a class of real-valued functions onX. For ε > 0, the bracketing number N[](ε,F , L2(P))
is defined as the smallest number of brackets each having L2(P)-size at most ε such that every
f ∈ F belongs to one of the brackets.

It is important to notice that the bracketing numbers are larger than covering numbers as shown
below.

Lemma 1.1. For every ε > 0,

NF (ε,F , L2(P)) ≤ NFall(ε/2,F , L
2(P)) ≤ N[](ε,F , L2(P)).

Here Fall denotes the class of all real-valued functions on X.

Proof. The first inequality is something we have already seen when discussing covering numbers.
The second inequality is proved as follows. First, get brackets [`i, ui], i = 1, . . . ,N, each of L2(P)-
size ε which cover F . Then it is obvious to see that the mid-point functions (`i + ui)/2, i = 1, . . . ,N
form an ε/2-net for F in the L2(P) metric. �
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Next, we provide an example where the bracketing numbers can be explicitly computed.

Example 1.1. Let F := {I(−∞,t]:t∈R : t ∈ R} and let P be a fixed probability measure on R. Then

N[](ε,F , L2(P)) ≤ 1 +
1
ε2 for every ε > 0. (11.2)

Here is an argument for (11.2). Let t0 := −∞, and recursively define

ti := sup
{
x > ti−1 : P(ti−1, x] ≤ ε

}
.

Then, for every δ > 0 sufficiently small, P(ti−1, ti − δ] ≤ ε. By letting δ → 0, we deduce that
P(ti−1, ti) ≤ ε. Also, if ti < ∞, then for every δ > 0, we have P(ti−1, ti + δ] > ε so that (by letting
δ ↓ 0), P(ti−1, ti] ≥ ε.

Let k ≥ 1 be the smallest integer for which tk = ∞. By the above, we have P(ti−1, ti] ≥ ε for
i = 1, . . . , k − 1 so that

1 = P(−∞,∞) =

k∑
i=1

P(ti−1, ti] ≥ (k − 1)ε,

which gives k ≤ 1 + ε−1. Now consider the brackets [I(−∞,ti−1], I(−∞,ti]] for i = 1, . . . , k. These
obviously cover F , i.e., each function in F belongs to one of these brackets, and their L2(P)-size is√

P(ti−1, ti) ≤
√
ε.

We have thus proved that

N[](
√
ε,F , L2(Q)) ≤ 1 +

1
ε
.

This, being true for all ε > 0, is the same as (11.2).

Before stating the analogue of (11.1) involving bracketing numbers, let us first state and prove
a simple classical asymptotic result, which shows that bracketing number bounds can be used to
control E sup f∈F |Pn f − P f |.

Proposition 1.1. Suppose F is a function class such that N[](ε,F , L2(P)) < ∞ for every ε > 0.
Then

sup
f∈F
|Pn f − P f |

P
−→ 0 as n→ ∞. (11.3)

Proof. Fix ε > 0, and let [`i, ui], i = 1, . . . ,N denote brackets of L2(P)-size ≤ ε which cover F . We
first argue that

sup
f∈F
|Pn f − P f | ≤ max

1≤i≤N
max

(
|Pnui − Pui|, |Pn`i − P`i|

)
+ ε. (11.4)

Let us first complete the proof of (11.3) assuming that (11.4) is true. To see this, note that the RHS
above converges to 0 almost surely as n→ ∞. This is because, by the strong LLN, |Pnui − Pui| and
|Pn`i − P`i| converge to zero almost surely as n→ ∞ for each i (note that the functions ui and `i do
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not change with n) and hence the finite maximum of these over i = 1, . . . ,N also converges to zero.
Thus, from (11.4), we deduce that

lim sup
n→∞

sup
f∈F
|Pn f − P f | ≤ ε almost surely for every ε > 0.

Applying this for each ε = 1/m and letting m→ ∞ proves (11.3).
It remains to prove (11.4). Fix f ∈ F and get a bracket [`i, ui] which contains f . This means

that `i(x) ≤ f (x) ≤ ui(x) for every x ∈ X. Write

Pn f − P f ≤ Pnui − Pui + Pui − P f

≤ Pnui − Pui + Pui − P`i

≤ Pnui − Pui + ‖ui − `i‖L2(P) ≤ Pnui − Pui + ε.

It can similarly be proved that Pn f − P f ≥ Pn`i − P`i − ε. Both these inequalities together imply
(11.4), which completes the proof of Proposition 1.1. �

We will now state the analogue of (11.1) involving bracketing numbers. This will be our second
main result for bounding the expected suprema of empirical processes (the first main result being
(11.1)).

Theorem 1.1. Let F be an envelop for the class F such that PF2 < ∞. Then

E sup
f∈F

n1/2|Pn f − P f | ≤ C‖F‖L2(P)J[](F,F ), (11.5)

where

J[](F,F ) :=
∫ 1

0

√
1 + log N[](ε‖F‖L2(P),F , L2(P)) dε.

The bound (11.5) is very similar to (11.1) with the only difference being that the “uniform” pack-
ing numbers supQ M(ε, ‖F‖L2(Q),F , L2(Q)) are replaced by the bracketing numbers N[](ε‖F‖L2(P),F , L2(P))
with respect to L2(P). Importantly, note that there is supremum over Q in (11.1) while the bracketing
numbers only involve the measure P.

Example 1.2. Suppose X1, . . . , Xn are iid observations having CDF F, and let Fn be the empirical
CDF. We have seen previously that

E sup
x∈R
|Fn(x) − F(x)| ≤

C
√

n

for every n ≥ 1. We will prove this via (11.5). For F = {I(−∞,t] : t ∈ R}, we have obtained bounds
for N[](ε,F , L2(P)) in (11.2). We deduce from these and (11.5) that

E sup
x∈R
|Fn(x) − F(x)| ≤

C
√

n

∫ 1

0

√
1 + log(1 + 1/ε2) dε ≤

C
√

n
.

The following presents a situation where bounding the bracketing numbers is much more tractable
compared to bounding the uniform covering numbers.
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Proposition 1.2. Let Θ ⊆ Rd be contained in a ball of radius R. Let F = {mθ : θ ∈ R be a function
class indexed by Θ. Suppose there exists a function M with ‖M‖L2(P) < ∞ such that

|mθ1(x) − mθ2(x)| ≤ M(x)‖θ1 − θ2‖ (11.6)

for all x ∈ X and θ1, θ2 ∈ Θ. Then, for every ε > 0,

N[](ε‖M‖L2(P),F , L
2(P)) ≤

(
1 +

4R
ε

)d
. (11.7)

Proof. Let θ1, . . . , θN be a maximal ε/2-packing set of Θ in the Euclidean metric. Consider the
brackets [mθi − εM/2,mθi + εM/2] for i = 1, . . . ,N. Note that

1. These brackets cover F . For every θ ∈ Θ, there exists 1 ≤ i ≤ N such that ‖θ − θi‖ ≤ ε/2. By
condition 11.6,

|mθ(x) − mθi(x)| ≤ M(x)‖θ − θi‖ ≤
εM(x)

2
,

which implies that mθ lies in the bracket [mθi − εM/2,mθi + εM/2].

2. The L2(P)-size of these brackets is at most ε‖M‖L2(P).

Because of these two observations, N[](ε‖M‖L2(P),F , L2(P)) is bounded from above by the ε/2-
packing number of Θ which we bounded previously. The completes the proof of Proposition 1.2. �

2 M-estimation

We now come back to the first statistics topic of the course: M-estimation. The basic abstract setting
is the following.

Let Θ be an abstract parameter space. Usually, it is a subset of Rd for parametric estimation
problems or it is a function class for nonparametric estimation problems. We have two processes
(one stochastic and one deterministic) that are indexed by θ ∈ Θ. The stochastic process will usually
depend on a “sample” size n and will be denoted by Mn(θ), θ ∈ Θ. The deterministic process will
usually not depend on n and will simply be denoted by M(θ), θ ∈ Θ. We expect Mn to be close to M
for large n.

Let θ̂n denote a maximizer of Mn(θ) over θ ∈ Θ, and let θ0 be a maximizer of M(θ) over θ ∈ Θ.
The goal in M-estimation is to study the behavior of θ̂n in relation to θ0.

Some concrete M-estimators are described below.

1. (Classical parametric estimation): The most classical M-estimator is the maximum likelihood
estimator (MLE). Here one typically has data X1, . . . , Xn in X that are iid having distribution
P. One also has a class {pθ : θ ∈ Θ} of densities over the space. The MLE minimizes
Mn(θ) := −Pn log pθ over θ ∈ Θ. The process M(θ) here is M(θ) := −P log pθ and θ0 can
then be taken to be the parameter value in Θ for which pθ is closest to P in terms of the
Kullback-Leibler divergence.
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2. (Least squares estimation in regression): In regression problems, one observes data (X1,Y1), . . . , (Xn,Yn)
with Xi ∈ X and Yi ∈ R, which can be modeled as iid observations having some (joint) dis-
tribution P. Let Θ be a class of functions from X to R. The least squares estimator over the
class Θ corresponds to minimizer of

Mn(θ) = Pn{y − θ(x)}2

over θ ∈ Θ. It is natural to compare this θ̂n to θ0 which is the minimizer of

M(θ) = P{y − θ(x)}2.

3. (Empirical risk minimization procedures in classification): Here one observes data (X1,Y1), . . . , (Xn,Yn),
where Xi ∈ X and Yi ∈ {−1, 1}. We model the data as iid having a distribution P. Let Θ denote
a class of functions from X to R; we are thinking of the sign of θ(x) as the output of the
classifier. It is natural to consider

Mn(θ) := PnI{y , sign(θ(x))} and M(θ) := PPI{y , sign(θ(x))}.

In this case, θ̂n will be the empirical minimizer of the misclassification rate and θ0 will be
the minimizer of the test error, both in the class Θ. It is therefore natural to compare the
performance of θ̂n to that of θ0.

Note that it is difficult to compute θ̂n because the minimization of Mn(θ) is a combinatorial
problem. For this, one also studies other choices of Mn(θ) in classification. To motivate these
other choices, let us first rewrite the above Mn(θ) as

Mn(θ) = PnI{y , sign(θ(x))} = Pnφ0(−yθ(x)), where φ0(t) := I(t ≥ 0).

For computational considerations, one often replaces φ0 by another loss function that is
convex and continuous but similar to φ0. Common choices of φ include (a) Hinge loss:
φ(t) := (1 + t)+, (b) Exponential loss: φ(t) := et, and (c) Logistic loss: φ(t) := log(1 + et).
Note that these three functions are convex on R, and they are similar to φ0 (they also satisfy
φ(t) ≥ φ0(t) for all t). We will study procedures θ̂n which minimize

Mn(θ) := Pnφ(−yθ(x)) over θ ∈ Θ,

and compare their performance to θ0.

The theory of M-estimation concerns itself usually with three questions: (a) Consistency, (b)
Rate of Convergence, and (c) Limiting Behavior. Consistency asserts that the discrepancy between
θ̂n and θ0 converges to zero as n → ∞. Rate of convergence aims to characterize the precise rate
of this convergence. The goal of the third question will be to give a precise characterization of the
limiting distribution of the discrepancy in the asymptotic setting where n→ ∞.

Consistency usually always holds and we have already seen a theorem last week on consistency.
We will mainly concentrate on the problem of rates of convergence. In many cases, a rate of conver-
gence result automatically implies consistency. In other cases, one needs a preliminary consistency
result so that attention can be focused in a local neighbourhood of θ0 in order to determine the rate
of convergence. In cases where preliminary consistency is required and our consistency theorem
last week is not sufficient, we will provide a different argument for consistency. Let us ignore con-
sistency for the time being and proceed directly to the rates. For studying limiting behavior, we
need theory on uniform central limit theorems which we are yet to cover.
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3 Rages of Convergence of M-estimators

Again, we work in the abstract setting where θ̂n minimizes a stochastic process Mn(θ) over θ ∈ Θ

and θ0 minimizes a deterministic process M(θ) over θ ∈ Θ. The argument for deriving rates starts
from the following basic inequality:

M(̂θn) − M(θ0) ≤ M(̂θn) − Mn(̂θn) − {M(θ0) − Mn(θ0)}.

We have already seen this inequality multiple times and it is a consequence of the simple inequality
Mn(̂θn) ≤ Mn(θ0). For convenience, we denote the RHS above by (M − Mn)(̂θn − θ0), so that

M(̂θn) − M(θ0) ≤ (Mn − M)(̂θn − θ0). (11.8)

We will use this inequality to study rates of convergence of θ̂n to θ0. We need to first fix a measure
of discrepancy between θ̂n and θ0. Let this be given by d(̂θn, θ0). In cases where Θ is a subset of Rd,
it is natural to take d(·, ·) as the usual Euclidean metric.

Note that the discrepancy measure d(·, ·) is somewhat external to the problem and, therefore, to
understand the behavior of d(̂θn, θ0), we need to connect it to M(θ) or Mn(θ). The usual assumption
for this is to assume that

M(θ) − M(θ0) & d2(θ, θ0). (11.9)

Here the notation a & b means that a ≥ Cb for a universal constant C (the notation a . b is defined
analogously).

Let us assume that (11.9) is true for all θ ∈ Θ. In some situations, it is only true in a neighbor-
hood of θ0 (we will come back to this later). Combining (11.8) and (11.9), we obtain

d2(̂θn, θ0) . (Mn − M)(̂θn − θ0).

Let δ̂n := d(̂θn, θ0). Then the above inequality simply implies

δ̂2
n . sup

θ∈Θ:d(θ,θ0)≤̂δn

(Mn − M)(θ − θ0).

We will now rigorously find upper bounds for the rate of convergence of d(̂θn, θ0). Formally, we say
that δn is a rate of convergence of d(̂θn, θ0) to zero if for every ε > 0, there exists a constant Cε such
that

d(̂θn, θ0) ≤ Cεδn with probability ≥ 1 − ε. (11.10)

Note that this is equivalent to

P
{
d(̂θn, θ0) > 2Mδn

}
→ 0 as M → ∞. (11.11)

It should be noted that (11.10) and (11.11) are nonasymptotic statements (they hold for each finite
n). Then imply, in particular, the asymptotic rate statement: d(̂θn, θ0) = OP(δn), which means the
following: for every ε > 0, there exists Cε and an integer Nε such that

P
{
d(̂θn, θ0) ≤ Cεδn

}
≥ 1 − ε for all n ≥ Nε . (11.12)
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Let us now study the probability

P
{
d(̂θn, θ0) > 2Mδn

}
for fixed δn and large M. We need to understand for which δn does this probability become small as
M → ∞.

Consider the decomposition

P
{
d(̂θn, θ0) > 2Mδn

}
=

∑
j>M

P
{
2 j−1δn < d(̂θn, θ0) ≤ 2 jδn

}
.

Applying the basic inequality and condition (11.9), we obtain

d2(̂θn, θ0) . M(̂θn) − M(θ0) ≤ (Mn − M)(̂θn − θ0).

It follows that

P
{
2 j−1δn < d(̂θn, θ0) ≤ 2 jδn

}
≤ P

{
(Mn − M)(̂θn − θ0) & 22 j−2δ2

n, d(̂θn, θ0) ≤ 2 jδn
}

≤ P

{
sup

θ:d(θ,θ0)≤2 jδn

(Mn − M)(θ − θ0) & 22 j−2δ2
n

}
.

1
22 j−2δ2

n
E

{
sup

θ:d(θ,θ0)≤2 jδn

(Mn − M)(θ − θ0)
}
.

Suppose that the function φn(·) is such that

E

{
sup

θ:d(θ,θ0)≤u
(Mn − M)(θ − θ0)

}
. φn(u) for every u. (11.13)

We thus get

P
{
2 j−1δn < d(̂θn, θ0) ≤ 2 jδn

}
.
φn(2 jδn)

22 jδ2
n

for every j.

As a consequence,

P
{
d(̂θn, θ0) > 2Mδn

}
.

∑
j>M

φn(2 jδn)
22 jδ2

n
.

The following assumption on φn(·) is usually made to simplify the expression above: there exits
0 < α < 2 such that

φn(cx) ≤ cαφn(x) for all c > 1 and x > 0. (11.14)

Under this assumption, we get

P
{
d(̂θn, θ0) > 2Mδn

}
.
φn(δn)
δ2

n

∑
j>M

2 j(α−2).

The quantity
∑

j>M 2 j(α−2) converges to zero as M → ∞. Therefore, if δn is such that

φn(δn) . δ2
n,
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then

d(̂θn, θ0) ≤ 2Mδn with probability at least 1 − uM,

where uM → 0 as M → ∞.
This gives us the following nonasymptotic rate of convergence theorem.

Theorem 3.1. Assume Condition 11.9 holds, and there exists a function φn(·) satisfying (11.13)
and (11.14). Then, for every M > 0, we have

d(̂θn, θ0) ≤ 2Mδn with probability at least 1 − uM provided that φn(δn) . δ2
n.

Here uM :=
∑

j>M 2 j(α−2) → 0 as M → ∞.

Next time we will give two examples to which the above general theorem can be applied.
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