
MATH 281C: Mathematical Statistics

Lecture 10

1 VC Subgraph and Fat Shattering Dimensions

For Boolean function classes F , we have seen that the VC dimension gives useful upper bounds on
covering numbers

sup
Q

log M(ε,F , L2(Q)) ≤
(c1

ε

)c2VC(F )
for all 0 < ε ≤ 1. (10.1)

What happens for function classes that are not Boolean? We will see today that there exist two
notions of combinatorial dimension for general function classes, which allow control of covering
numbers via bounds similar to (10.1). These are the notions of VC subgraph dimension and fat
shattering dimension which we will go over today.

1.1 VC Subgraph Dimension

The VC subgraph dimension of F is simply the VC dimension of the Boolean class obtained by
taking the indicators of the subgraphs of functions in F . To formally define this, let us first define
the notion of subgraph of a function.

Definition 1.1 (Subgraph). For a function f : X → R, its subgraph sg( f ) is a subset of X × R
defined by

sg( f ) = {(x, t) ∈ X × R : t < f (x)}.

In other words, sg( f ) consists of all points that lie below the graph of the function f .

We can now define the VC subgraph dimension of F as:

Definition 1.2 (VC subgraph dimension). The VC subgraph dimension of F is defined as the VC
dimension of the Boolean class {Isg( f ) : f ∈ F }. We denote it by VC(F ).

The VC subgraph dimension can be related to covering numbers in the same way as (10.1). This
is done in the following result.

Theorem 1.1. Suppose F is a class of functions with envelope F, and VC(F ) = D. Then

sup
Q

M(ε‖F‖L2(Q),F , L
2(Q)) ≤

(c1

ε

)c2D
for all 0 < ε ≤ 1, (10.2)

where c1, c2 > 0 are universal constants.
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Proof. The idea is relate the L2(Q) norm between two functions in F to an L2 norm between their
subgraphs. Fix f , g ∈ F , and write∫

| f − g|2dQ ≤
∫

2F(x)| f (x) − g(x)|dQ(x).

Note that, for every two real numbers a and b,

|a − b| =
∫
|I(t < a) − I(t < b)|dt.

This gives∫
| f − g|2dQ ≤

∫
2F(x)| f (x) − g(x)|dQ(x)

=

∫
2F(x)

(∫
|I{t < f (x)} − I{t < g(x)}| dt

)
dQ(x)

=

∫ ∫
|Isg( f )(x, t) − Isg(g)(x, t)|2F(x) dQ(x)dt

=

∫ ∫
(x,t):|t|≤F(x)

|Isg( f )(x, t) − Isg(g)(x, t)|2F(x) dQ(x)dt

=

{∫ ∫
(x,t):|t|≤F(x)

2F(x)dQ(x)dt
}

×

∫ ∫
(x,t):|t|≤F(x)

|Isg( f )(x, t) − Isg(g)(x, t)|
2F(x)dQ(x)dt∫ ∫

(x,t):|t|≤F(x) 2F(x)dQ(x)dt

= 4
∫

F2(x)dQ(x)

×

∫ ∫
(x,t):|t|≤F(x)

|Isg( f )(x, t) − Isg(g)(x, t)|2
2F(x)dQ(x)dt∫ ∫

(x,t):|t|≤F(x) 2F(x)dQ(x)dt
.

We have thus proved that

‖ f − g‖L2(Q) ≤ 2‖F‖L2(Q)‖Isg( f ) − Isg(g)‖L2(Q′), (10.3)

where Q′ is a probability measure on X × R whose density with respect to Q × Lebesgue is propor-
tional to

2F(x)I{(x, t) : |t| ≤ F(x)}.

It then follows from (10.3) that

M
(
ε‖F‖L2(Q),F , L

2(Q)
)
≤ M

(
ε/2, {Isg( f ), f ∈ F }, L2(Q′)

)
.

To bound the RHS, we simply use the earlier result for Boolean classes; see (10.1). This completes
the proof of Theorem 1.1. �

The following is an immediate corollary of Theorem 1.1 and our main bound on the expected
suprema of empirical processes.
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Corollary 1.1. If F has envelop F and VC subgraph dimension D, then

E sup
f∈F
|Pn f − P f | ≤ C‖F‖L2(P)

√
D
n
. (1.1)

Proof. Our main bound on the expected suprema of empirical processes gives

E sup
f∈F
|Pn f − P f | ≤ C‖F‖L2(P)

J(F,F )
√

n
,

and we bound J(F,F ) (using Theorem 1.1) as

J(F,F ) =

∫ 1

0

√
1 + log sup

Q
M(ε‖F‖L2(Q),F , L2(Q)) dε

≤

∫ 1

0

√
1 + c2D log(c1/ε) dε ≤ 1 + D1/2

∫ 1

0

√
c2 log(c1/ε) dε ≤ CD1/2,

which completes the proof. �

Example 1.1. In the previous lecture, we claimed that

E sup
θ∈R:|θ−θ0 |≤δ

|(Pn − P)(mθ − mθ0)| ≤ C

√
δ

n
,

where mθ(x) := I(θ − 1 ≤ x ≤ θ + 1). We gave a partial proof of this result. To complete the proof,
it suffices to show that the function class{

I[θ−1,θ+1] − I[θ0−1,θ0+1] : θ ∈ R
}

has finite VC subgraph dimension (≤ 3).

Let us now look at a reformulation of the VC subgraph dimension. This defines the dimension
directly in terms of the class F without going to subgraphs. This reformulation will also make clear
the connection to fat shattering dimension.

We say that a subset {x1, . . . , xn} of X is subgraph-shattered by F if there exist real numbers
t1, . . . , tn such that for every subset S ⊆ {1, . . . , n}, there exists f ∈ F with

(xs, ts) < sg( f ) for s ∈ S and (xs, ts) ∈ sg( f ) for s < S . (10.4)

Note that (10.4) is equivalent to

f (xs) ≤ ts for s ∈ S and f (xs) > ts for s < S . (10.5)

In words, we say that {x1, . . . , xn} of X is subgraph-shattered by F if there exist levels t1, . . . , tn such
that for every subset S ⊆ {1, . . . , n}, there exists a function f which goes under the level for each xs,
s ∈ S and strictly over the level for xs, s < S .

The VC subgraph dimension VC(F ) is defined as the maximum cardinality of a finite subset of
X that is subgraph-shattered by F .
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Let us now describe a potential problem with using the VC subgraph dimension to control
covering numbers. LetM denote the class of all non-decreasing functions f : R→ [−1, 1], i.e.,M
consists of all non-decreasing functions on R that are bounded in magnitude by 1. It turns out that

sup
Q

M(ε,M, L2(Q)) ≤ exp
(C
ε

)
for all ε > 0. (10.6)

It is also easy to see that the VC subgraph dimension ofM equals ∞, that is, for every n ≥ 1, there
exists a finite subset of R that is subgraph-shattered byM. Therefore, the notion of VC subgraph
dimension is not useful here and Theorem 1.1 does not give anything meaningful for this classM.
It is actually possible to prove (10.6) using the notion of fat shattering dimension.

1.2 Fat Shattering Dimension

The notion of fat shattering dimension is particularly useful to upper bound the packing number
of the class of (i) uniformly bounded monotone functions and (ii) uniformly bound functions with
finite total variation. The total variation of a function f : R→ R is defined as

‖ f ‖TV = sup
n≥1

sup
x1<x2<···<xn

n−1∑
i=1

| f (xi) − f (xi+1)|.

Mendelson and Vershynin (2003) proved that the L2-covering numbers of every uniformly
bounded class of functions are exponential in its shattering dimension. This extends Dudley’s
theorem on classes of {0, 1}-valued functions, for which the shattering dimension is the Vapnik-
Chervonenkis dimension.
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